For advanced search options you can also view this in the Forschungsinformationssystem of the TU Dresden.

1 bis 9 von 9 Einträgen

Osterholzer, Johannes: Complexity of Uniform Membership of Context-Free Tree Grammars. In: Proceedings of the 6th International Conference on Algebraic Informatics (CAI 2015), Lecture Notes in Computer Science, Vol. 9270 (2015), S. 176–188

Osterholzer, Johannes; Dietze, Toni; Herrmann, Luisa: Linear Context-Free Tree Languages and Inverse Homomorphisms. In: Computing Research Repository (2015)

Dietze, Toni; Nederhof, Mark-Jan: Count-Based State Merging for Probabilistic Regular Tree Grammars. In: Proceedings of the 12th International Conference on Finite-State Methods and Natural Language Processing (FSMNLP 2015) (2015)

Gebhardt, Kilian; Osterholzer, Johannes: A direct link between Tree-Adjoining and Context-Free Tree Grammars. In: Proceedings of the 12th International Conference on Finite-State Methods and Natural Language Processing (FSMNLP 2015) (2015)

Denkinger, Tobias: A Chomsky-Schützenberger representation for weighted multiple context-free languages. In: Proceedings of the 12th International Conference on Finite-State Methods and Natural Language Processing (FSMNLP 2015) (2015)

Herrmann, Luisa; Vogler, Heiko: A Chomsky-Schützenberger Theorem for Weighted Automata with Storage. In: Proceedings of the 6th International Conference on Algebraic Informatics (CAI 2015), Lecture Notes in Computer Science 9270 (2015), S. 115–127

Droste, Manfred; Heusel, Doreen; Vogler, Heiko: Weighted Unranked Tree Automata over Tree Valuation Monoids and Their Characterization by Weighted Logics. In: Proceedings of the 6th International Conference on Algebraic Informatics (CAI 2015), Lecture Notes in Computer Science 9270 (2015), S. 90–102

Fülöp, Zoltán; Vogler, Heiko: Characterizing Weighted MSO for Trees by Branching Transitive Closure Logics. In: Theoretical Computer Science 594 (2015), S. 82–105

Teichmann, Markus; Osterholzer, Johannes: A link between multioperator and tree valuation automata and logics. In: Theoretical Computer Science 594 (2015), S. 106–119


Diese Informationen werden vom FIS bereitgestellt.
Stand: 20.11.2019 22:26 Uhr