Programmierung

Hinweis Sie können die Aufgaben auf Papier lösen und als Scan bzw. Foto über Opal einreichen.

Aufgabe 1 (AGS 12.4.1 ★)

- (a) Bestimmen Sie für jeden der folgenden λ -Terme t die Mengen FV(t) und GV(t):
 - $(\lambda x.x y) (\lambda y.y)$
 - $(\lambda x.(\lambda y.z (\lambda z.z (\lambda x.y))))$
 - $\bullet \ \ (\lambda x.(\lambda y.x\ z\ (y\ z)))\ (\lambda x.y\ (\lambda y.y))$
- (b) Reduzieren Sie die folgenden λ-Terme zu Normalformen. Schreiben Sie bevor Sie einen Ableitungsschritt ausführen für die relevanten (Teil-)Ausdrücke die Mengen der freien bzw. der gebundenen Vorkommen von Variablen auf.
 - $(\lambda x.(\lambda y.x \ z \ (y \ z))) \ (\lambda x.y \ (\lambda y.y))$
 - $(\lambda x.(\lambda y.(\lambda z.z))) x (+ y 1)$
 - $(\lambda x.(\lambda y.x (\lambda z.y z))) (((\lambda x.(\lambda y.y)) 8) (\lambda x.(\lambda y.y) x))$
 - $(\lambda h.(\lambda x.h(x x))(\lambda x.h(x x)))((\lambda x.x)(+15))$
 - $(\lambda f.(\lambda a.(\lambda b.f \ a \ b))) \ (\lambda x.(\lambda y.x))$

Aufgabe 2 (AGS 12.4.29 ★)

- (a) Geben Sie einen Kombinator A an, so dass $A t s u \Rightarrow^* s$ für alle Lambdaterme t, s und u.
- (b) Geben Sie einen Kombinator B an, so dass B t $s \Rightarrow^* s$ t für alle Lambdaterme t und s.
- (c) Geben Sie einen Kombinator C an, so dass $C \subset A$
- (d) Geben Sie einen Kombinator D an, so dass $D \Rightarrow_{\beta} D$.
- (e) Geben Sie einen Kombinator E an, so dass E E $t \Rightarrow^* E$ t E für jeden Lambdaterm t.

Zusatzaufgabe 1 (AGS 12.4.40 *)

Berechnen Sie die Normalform des λ -Terms $(\lambda fxy.fyx)(\lambda xy.x)xy$, indem Sie ihn schrittweise reduzieren. Geben Sie dabei vor jedem Schritt für die relevanten Teilausdrücke die Mengen der gebundenen bzw. frei vorkommenden Variablen an.

Zusatzaufgabe 2 (AGS 12.4.2)

Reduzieren Sie den folgenden λ -Term bis seine Normalform erreicht ist:

$$(\lambda xy.x \ z \ (z \ y \ z)) \ (\lambda x.y \ (\lambda y.y))$$

Schreiben Sie – bevor Sie einen Ableitungsschritt ausführen – für die relevanten (Teil-)Ausdrücke die Mengen der freien bzw. der gebundenen Vorkommen von Variablen auf.