Formale Baumsprachen

Task 13 (relatedness)

Let $\Sigma = {\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}}$ be a ranked alphabet and $G = (N, \Sigma, Z, P)$ a regular tree grammar where $N = {Z, A, B, C}$ and

$$P = \left\{ \begin{array}{ll} Z \to \sigma(\sigma(A,B),C), & Z \to B, & A \to \alpha, & A \to B, \\ B \to \beta, & B \to A, & B \to C, & C \to C \end{array} \right\}.$$

- (a) Use the construction from the lecture to give a regular tree grammar in normal form equivalent to G.
- (b) Give a bu-det fta that is related to the normal form regular tree grammar constructed in Exercise 13 (a).
- (c) Give a regular tree grammar that is related to the normal form bu-det fta $\mathcal{M}=(Q,\Sigma,\tau,\{q_0\})$ where $Q=\{0,1\},\ \Sigma=\{\sigma^{(2)},\alpha^{(0)},\beta^{(0)}\},\ q_0=0,$ and τ is given by

$$\tau_{\alpha}()=1, \hspace{1cm} \tau_{\beta}()=0, \text{ and } \hspace{1cm} \tau_{\sigma}(p,q)=(p+q)\,\%\,2 \hspace{1cm} \text{for each } p,q\in Q.$$

Task 14 (yield(Rec) and CF)

- (a) Let $\Delta = \{(a,)_a, (b,)_b\}$. Give a context-free grammar that generates D_Δ (i.e. the Dyck language of well-bracketed strings).
- (b) Let $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}, \gamma^{(0)}\}$ and G be an rtg over Σ with initial symbol Z and productions

$$Z \to \alpha + \beta + \gamma + \sigma(A, Z) + \sigma(Z, B)$$
 $A \to \alpha + \gamma + \sigma(A, A)$ $B \to \beta + \gamma + \sigma(B, B)$.

Describe the string languages yield $_{\alpha}(L(G))$, yield $_{\beta}(L(G))$, and yield $_{\gamma}(L(G))$.

- (c) Give an rtg H in normal form with $D_{\Delta} = \text{yield}_{e}(L(H))$ (see Task 14(a)) for some e.
- (d) Using the construction from the lecture, transform the rtg G (see Task 14(b)) into a context-free grammar G' such that $L(G') = \text{yield}_{\gamma}(L(G))$. Is there a simpler context-free grammar generating the same language?