Formale Baumsprachen

Task 1 (finite state (string) automata)

Let $\Sigma = \{a, b\}$ be an alphabet (without ranks).

(a) Give a finite state automaton $\mathcal{A}=(Q,\varSigma,q_0,F,T)$ that recognizes

$$L = \{ w \in \Sigma^* \mid |w|_{\mathbf{a}} - |w|_{\mathbf{b}} \bmod 2 \equiv 0 \}.$$

- (b) Draw a graph representing \mathcal{A} .
- (c) Give a run $\theta \in T^*$ of $\mathcal A$ on a aba.

Task 2 (ranked alphabets)

- (a) Extend the intersection, union, and subset relation to ranked alphabets.
- (b) Define minimal ranked alphabets Δ_1 and Δ_2 such that $\xi_1 \in T_{\Delta_1}$ and $\xi_2 \in T_{\Delta_2}$.
- (c) Prove or refute: There is a ranked alphabet \varGamma such that $\xi_1,\xi_2\in \mathcal{T}_\varGamma.$

Task 3 (tree domain)

In the lecture we defined trees as well-formed expressions. An alternative definition characterises a tree as a tuple (t, φ) where, intuitively, t is a set of *Gorn addresses* that is closed under certain operations and φ assigns a symbol from some alphabet Δ to every element of t.

- (a) Give a formal definition of trees over \varDelta in the above sense.
- (b) Consider the following trees:

Give the corresponding tuples (t_1, φ_1) and (t_2, φ_2) according to the definition in Task 3 (a).

- (c) Formally define the following characteristics of trees in the sense of Task 3 (a):
 - (i) height (i.e. maximal length of a path)
 - (ii) size (i.e. number of nodes)
 - (iii) set of positions (i.e. set of addresses to all nodes)
 - (iv) set of subtrees (
 - (v) label at a position
 - (vi) subtree at a position