Seminar/Proseminar im SoSe 2019 Natural Language Processing

Thomas Ruprecht

TU Dresden Fakultät Informatik Institut für Theoretische Informatik Professur für Grundlagen der Programmierung

4. April 2019

(Pro-)Seminar?

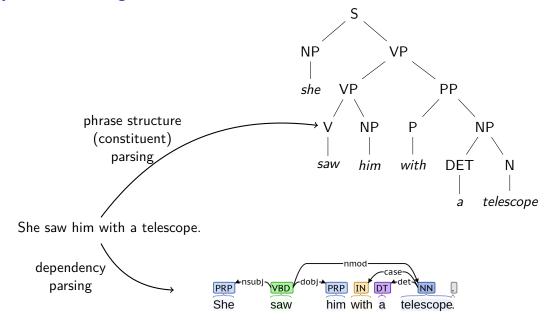
Wir beschäftigen uns gemeinsam mit Literatur zu einem Themengebiet (NLP):

- jede/r Studierende
 - liest und versteht ein (eventuell auch zwei) Paper
 - schreibt eine Seminararbeit von 12-15 Seiten (Seminar)
 - bereitet ein Handout (1-2 Seiten) vor (Proseminar)
 - ▶ hält einen Vortrag von 30-35 Minuten am Semesterende
- Diskussion im Anschluss an jeden Vortrag

Zielgruppen

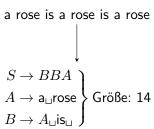
engagierte Studenten folgender Studiengänge

- ▶ Bachelor Informatik: Module INF-B-510 (Proseminar), INF-B-520 (Proseminar), INF-B-610 (Proseminar)
- Master Informatik: Modul INF-AQUA (Seminar)
- Diplom Informatik: Module INF-D-520 (Proseminar), INF-D-940 (Seminar)
- Diplom Informatik (Studienordnung 2004 oder älter): Hauptseminar, Fachgebiet Theorie der Programmierung


Voraussetzungen für die Teilnahme

- Bachelor Informatik: Modul INF-B-270 (Formale Systeme)
- Master Informatik: keine; Grundlagenwissen über die Themengebiete wird empfohlen
- Diplom Informatik: Modul INF-B-270 (Formale Systeme)
- ▶ Diplom Informatik (Studienordnung 2004 oder älter): Grundlagen der Theoretischen Informatik

Bewertungskriterien


- Verständnis des bearbeiteten Themas, Fähigkeit den Inhalt in eigenen Worten zu erklären und zusammenzufassen
- anschaulicher Vortrag: Auswahl und Präsentation der Inhalte, geeignete Medien, Rhetorik
- ▶ Qualität der schriftlichen Arbeit/des Handouts
- Anwesenheit bei allen Vorträgen, aktive Teilnahme an den Diskussionen
- fristgerecht und eigenständig Termine mit den Betreuern verabreden (mindestens 1 Woche im Voraus) sowie die geforderten Materialien abgeben

Syntactic Parsing

Thema 1: The smallest grammar problem [Cha+05]

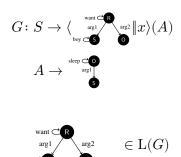
- ▶ Problemstellung:
 - gegebenes Wort
 - gesucht: kleinste CFG, die nur das Wort generiert
 - Größe: Symbole auf rechten Regelseiten
- Anwendung:
 - Kompression von Zeichenketten
 - Mustererkennung in DNA, natürlichsprachigen Texten
- Inhalt des Papers:
 - Schwere des Problems analysiert
 - ► Algorithmen zur Lösungsapproximation

Thema 2: An efficient best-trees algorithm for weighted tree automata over the tropical semiring [BDZ15]

- Problemstellung:
 - Die Bäume mit dem höchsten Gewichte einer gewichteten Baumsprache sollen bestimmt werden.
- Anwendung:
 - Decoding bei Machine Translation, Parsing
- Inhalt des Papers:
 - Algorithmus der die n-besten Bäume im Fall von WTA über dem tropischen Semirings berechnet
 - Komplexitätsanalyse

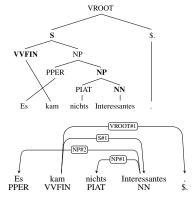
Thema 3: Guided parsing of range concatenation languages [Bar+01]

- ▶ Problemstellung:
 - Parsing von range concatenation languages ist polynomiell, aber aufwendig
- Anwendung:
 - diskontinuierliches Konstituentenparsing
- Inhalt des Papers:
 - Parse-Guides helfen bei nicht-deterministischen Entscheidungen
 - ▶ Konstruktion von Guides aus Parses mit weniger-komplexen Grammatik
 - experimentelle Untersuchung für Konstituentenparsing


Thema 4: Coarse-to-fine parsing for expressive grammar formalisms [TKG17]

- Problemstellung:
 - langsames Parsing mit großen statistischen Grammatiken
 - weniger-komplexe Modelle durch
 Zusammenfassen von Nichtterminalen
- Anwendung:
 - (diskontinuierliches) Konstituentenparsing
- Inhalt des Papers:
 - coarse-to-fine Parsing mittels groben Klassen von Nichtterminalen
 - experimentelle Evaluation für verschiedene Grammatikformalismen

$$\begin{split} G \colon S &\to NP\,VP \\ VP &\to VP\,NP + \text{to}\,\,VP\,NP + \text{loves} \\ NP &\to \text{john} + \text{mary} \\ & \qquad \qquad \bigg|_{C(x)} \bigg\{ & \text{if}\,\,x = S \\ & \text{HP} \quad \text{if}\,\,x \in \{NP,\,VP\,\} \\ & \text{...} \\ & G_C \colon S \to HP\,HP \\ & HP \to HP\,HP + \text{to}\,\,HP\,HP + \text{loves} \\ & \qquad \qquad + \text{john} + \text{mary} \end{split}$$


Thema 5: Graph parsing with s-grammars [GKT15]

- Problemstellung:
 - Synchrone Graph-String-Grammatiken zur Überführung von Sätzen in AMR
 - Generierung von Sätzen aus AMR erfordert Parsing von Graphen
- Anwendung
 - Machine Translation (Generierung in Zielsprache)
 - ► Training von synchronen Grammatiken
- Inhalt des Papers:
 - Parsing mit dieser Grammatik über Graphen
 - experimentelle Evaluation

Thema 6: Parsing as reduction [FM15]

- Problemstellung:
 - Konstituenten-Parsing durch große statistische Modelle ist langsam
 - Dependency-Parsing i.d.R. weniger aufwendig
- Anwendung
 - (diskontinuierliches) Konstituenten-Parsing
- Inhalt des Papers:
 - Isomorphismus zw. speziellen
 Dependency-Parses und Konstituenten-Parses
 - experimentelle Evaluation mit natürlichsprachigen Korpora

Thema 7: Weighting finite state transducer with neural context [RCE16]

- Problemstellung
 - Zeichenreihen sollen in andere Zeichenreihen übersetzt werden
 - FST erlauben Modellierung struktureller Einschränkungen bei lokalem Kontext
 - Neuronale Modelle erlauben automatische Features mit globalem Kontext
- Anwendung
 - Beugung von Worten, Wortstammbestimmung
- Inhalt des Papers
 - Verbindung von WFST mit neuronalen Netzen
 - Modell, Trainings- und Dekodieralgorithmen und Experimente

Themenübersicht

- ► The smallest grammar problem [Cha+05]
- ▶ An efficient best-trees algorithm for weighted tree automata over the tropical semiring [BDZ15]
- Guided parsing of range concatenation languages [Bar+01]
- ▶ Coarse-to-fine parsing for expressive grammar formalisms [TKG17]
- Graph parsing with s-grammars [GKT15]
- Parsing as reduction [FM15]
- ▶ Weighting finite state transducer with neural context [RCE16]

Zeitplan

04. April	erstes Treffen und Themenvergabe im Raum APB/3027 (Fakultät Informatik)
bis zum 26. April	Termine mit Betreuern (rechtzeitig verabreden!); Ziel: in der Lage sein, dem Betreuer das Problem und die beschriebenen Ansätze zu skizzieren und auf Nachfragen zu reagieren; Fragen an den Be- treuer müssen ganz konkret formuliert werden.
bis zum 17. Mai	Vorabversion der Seminararbeit abgeben, Termine zur Besprechung machen
bis zum 31. Mai	fertige Seminararbeit abgeben
bis zum 14. Juni	Vorabversion der Vortragsmaterialien abgeben, Termine zur Besprechung machen
bis zum 28. Juni 05. Juli	fertige Vortragsmaterialien abgeben Vorträge im Raum APB/3027

Informationen

Den Link zu jedem Paper sowie weitere Hilfestellungen findet ihr unter: https://www.orchid.inf.tu-dresden.de/teaching/2019ss/seminar/

References I

- Johanna Björklund, Frank Drewes und Niklas Zechner. "An efficient best-trees algorithm for weighted tree automata over the tropical semiring". In: International Conference on Language and Automata Theory and Applications. Springer. 2015, S. 97–108.
- Moses Charikar u. a. "The smallest grammar problem". In: *IEEE Transactions on Information Theory* 51.7 (2005), S. 2554–2576.
- Daniel Fernández-González und André FT Martins. "Parsing as reduction". In: arXiv preprint arXiv:1503.00030 (2015).

References II

- Jonas Groschwitz, Alexander Koller und Christoph Teichmann. "Graph parsing with s-graph grammars". In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Bd. 1. 2015, S. 1481–1490.
- Pushpendre Rastogi, Ryan Cotterell und Jason Eisner. "Weighting finite-state transductions with neural context". In: *Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.* 2016, S. 623–633.
- Christoph Teichmann, Alexander Koller und Jonas Groschwitz. "Coarse-to-fine parsing for expressive grammar formalisms". In:

 Proceedings of the 15th International Conference on Parsing Technologies. 2017, S. 122–127.