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Weighted CKY parsing [CS70; Kas66; You67]

▶ requires cfg in Chomsky normal form
▶ fill chart from bottom to top
▶ each cell corresponds to span in word to parse
▶ add nonterminal to cell if partial derivation

yields span

▶ store best weight along with nonterminals
▶ close each cell with chain rules
▶ store backtrace (rule, reference to predecessor

cells) Trougnouf, “CYK algorithm: animation showing

every step of a sentence parsing”, 15 January

2018, via wikimedia.org

https://commons.wikimedia.org/wiki/File:CYK_algorithm_animation_showing_every_step_of_a_sentence_parsing.gif
https://commons.wikimedia.org/wiki/File:CYK_algorithm_animation_showing_every_step_of_a_sentence_parsing.gif
https://commons.wikimedia.org/wiki/File:CYK_algorithm_animation_showing_every_step_of_a_sentence_parsing.gif


The CKY parsing algorithm

Require: cfg 𝐺 = (𝑁, 𝛴, 𝑃, 𝑆) in Cnf, word 𝑡1…𝑡𝑛 where 𝑡1, …, 𝑡𝑛 ∈ 𝛴
Ensure: family of sets (𝑐𝑖,𝑗 ⊆ 𝑁 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛) such that 𝐴 ∈ 𝑐𝑖−1,𝑗 ⟺ 𝐷𝐴

𝐺(𝑡𝑖…𝑡𝑗) ≠ ∅
1: function cky(𝑃, 𝑡1…𝑡𝑛)
2: for 1 ≤ 𝑖 ≤ 𝑛 do
3: 𝑐𝑖−1,𝑖 ∶= {𝐴 ∣ 𝐴 → 𝑡𝑖 ∈ 𝑃}
4: for 2 ≤ 𝑟 ≤ 𝑛 do
5: for 0 ≤ 𝑖 ≤ 𝑛 − 𝑟 do
6: 𝑗 ∶= 𝑖 + 𝑟
7: 𝑐𝑖,𝑗 ∶= {𝐴 ∣ 𝑖 < 𝑚 < 𝑗, 𝐴 → 𝐵𝐶 ∈ 𝑃∶ 𝐵 ∈ 𝑐𝑖,𝑚, 𝐶 ∈ 𝑐𝑚,𝑗}
8: return (𝑐𝑖,𝑗 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛)



The CKY parsing algorithm

Require: cfg 𝐺 = (𝑁, 𝛴, 𝑃, 𝑆) in Cnf, word 𝑡1…𝑡𝑛 where 𝑡1, …, 𝑡𝑛 ∈ 𝛴
Ensure: family of sets (𝑐𝑖,𝑗 ∈ 𝑁 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛) such that 𝐴 ∈ 𝑐𝑖−1,𝑗 ⟺ 𝐷𝐴

𝐺(𝑡𝑖…𝑡𝑗) ≠ ∅
1: function cky(𝑃, 𝑡1…𝑡𝑛)
2: for 1 ≤ 𝑖 ≤ 𝑛 do
3: 𝑐𝑖−1,𝑖 ∶= ∅
4: for 𝐴 → 𝑡𝑖 ∈ 𝑃 do
5: 𝑐𝑖−1,𝑖 ∪= {𝐴}
6: for 2 ≤ 𝑟 ≤ 𝑛 do
7: for 0 ≤ 𝑖 ≤ 𝑛 − 𝑟 do
8: 𝑗 ∶= 𝑖 + 𝑟
9: 𝑐𝑖,𝑗 ∶= ∅

10: for 𝐴 ∈ 𝑁 do
11: for 𝑚 ∈ {𝑙 + 1, 𝑙 + 2, …, 𝑟 − 1} do
12: for 𝐴 → 𝐵𝐶 ∈ 𝑅 do
13: if 𝐵 ∈ 𝑐𝑖,𝑚 and 𝐶 ∈ 𝑐𝑚,𝑗 then
14: 𝑐𝑖,𝑗 ∪= {𝐴}
15: return (𝑐𝑖,𝑗 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛)



The CKY parsing algorithm + weights

Require: weighted cfg 𝐺 = (𝑁, 𝛴, 𝑃, 𝑆, 𝜇) in Cnf, word 𝑡1…𝑡𝑛 where 𝑡1, …, 𝑡𝑛 ∈ 𝛴
Ensure: family of mappings (𝑐𝑖,𝑗 ∶ 𝑁 → ℝ ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛) such that

𝑐𝑖−1,𝑗(𝐴) = max{𝜇(𝑑) ∣ 𝑑 ∈ 𝐷𝐴
𝐺(𝑡𝑖…𝑡𝑗)} ∪ {0}

1: function cky(𝑃, 𝜇, 𝑡1…𝑡𝑛)
2: for 1 ≤ 𝑖 ≤ 𝑛 do
3: 𝑐𝑖−1,𝑖 ∶= 𝐴 ↦ max{𝜇(𝐴 → 𝑡𝑖) ∣ 𝐴 → 𝑡𝑖 ∈ 𝑃} ∪ {0}
4: for 2 ≤ 𝑟 ≤ 𝑛 do
5: for 0 ≤ 𝑖 ≤ 𝑛 − 𝑟 do
6: 𝑗 ∶= 𝑖 + 𝑟
7: 𝑐𝑖,𝑗 ∶= 𝐴 ↦ max{𝜇(𝐴 → 𝐵𝐶) ⋅ 𝑐𝑖,𝑚(𝐵) ⋅ 𝑐𝑚,𝑗(𝐶) ∣ 𝑖 < 𝑚 < 𝑗, 𝐴 → 𝐵𝐶 ∈ 𝑃} ∪ {0}
8: return (𝑐𝑖,𝑗 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛)



The CKY parsing algorithm + weights

Require: weighted cfg (𝑁, 𝛴, 𝑃, 𝑆, 𝜇) in Cnf, word 𝑡1…𝑡𝑛 where 𝑡1, …, 𝑡𝑛 ∈ 𝛴
Ensure: family of mappings (𝑐𝑖,𝑗 ∶ 𝑁 → ℝ ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛) such that

𝑐𝑖−1,𝑗(𝐴) = max{𝜇(𝑑) ∣ 𝑑 ∈ 𝐷𝐴
𝐺(𝑡𝑖…𝑡𝑗)} ∪ {0}

1: function cky(𝑃, 𝜇, 𝑡1…𝑡𝑛)
2: (𝑐𝑖,𝑗,𝐴 ∶= 0 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝐴 ∈ 𝑁)
3: for 1 ≤ 𝑖 ≤ 𝑛 do
4: for 𝐴 → 𝑡𝑖 ∈ 𝑃 do
5: 𝑐𝑖−1,𝑖,𝐴 ∶= max{𝑐𝑖−1,𝑖,𝐴, 𝜇(𝐴 → 𝑡𝑖)}
6: for 2 ≤ 𝑟 ≤ 𝑛 do
7: for 0 ≤ 𝑖 ≤ 𝑛 − 𝑟 do
8: 𝑗 ∶= 𝑖 + 𝑟
9: for 𝐴 ∈ 𝑁 do

10: for 𝑚 ∈ {𝑖 + 1, 𝑖 + 2, …, 𝑗 − 1} do
11: for 𝐴 → 𝐵𝐶 ∈ 𝑅 do
12: 𝑐𝑖,𝑗,𝐴 ∶= max{𝑐𝑖,𝑗,𝐴, 𝜇(𝐴 → 𝐵𝐶) ⋅ 𝑐𝑖,𝑚,𝐵 ⋅ 𝑐𝑚,𝑗,𝐶}
13: return (𝑐𝑖,𝑗 ∶= 𝐴 ↦ 𝑐𝑖,𝑗,𝐴 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛)



The CKY parsing algorithm + weights + chain rules
Require: weighted binary cfg (𝑁, 𝛴, 𝑃, 𝑆, 𝜇), word 𝑡1…𝑡𝑛 where 𝑡1, …, 𝑡𝑛 ∈ 𝛴
Ensure: family of mappings (𝑐𝑖,𝑗 ∶ 𝑁 → ℝ ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛) such that

𝑐𝑖,𝑗(𝐴) = max{𝜇(𝑑) ∣ 𝑑 ∈ 𝐷𝐴
𝐺(𝑡𝑖…𝑡𝑗)} ∪ {0}

1: function cky(𝑃, 𝜇, 𝑡1…𝑡𝑛)
2: (𝑐𝑖,𝑗,𝐴 ∶= 0 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝐴 ∈ 𝑁)
3: for 1 ≤ 𝑖 ≤ 𝑛 do
4: for 𝐴 → 𝑡𝑖 ∈ 𝑃 do
5: 𝑐𝑖−1,𝑖,𝐴 ∶= max{𝑐𝑖−1,𝑖,𝐴, 𝜇(𝐴 → 𝑡𝑖)}
6: 𝑐′ = unary_closure(𝑃 , 𝜇, (𝑐𝑖−1,𝑖,𝐴 ∣ 𝐴 ∈ 𝑁))
7: (𝑐𝑖−1,𝑖,𝐴 ∶= 𝑐′

𝐴 ∣ 𝐴 ∈ 𝑁)
8: for 2 ≤ 𝑟 ≤ 𝑛 do
9: for 0 ≤ 𝑖 ≤ 𝑛 − 𝑟 do

10: 𝑗 ∶= 𝑖 + 𝑟
11: for 𝐴 ∈ 𝑁 do
12: for 𝑚 ∈ {𝑖 + 1, 𝑖 + 2, …, 𝑗 − 1} do
13: for 𝐴 → 𝐵𝐶 ∈ 𝑅 do
14: 𝑐𝑖,𝑗,𝐴 ∶= max{𝑐𝑖,𝑗,𝐴, 𝜇(𝐴 → 𝐵𝐶) ⋅ 𝑐𝑖,𝑚,𝐵 ⋅ 𝑐𝑚,𝑗,𝐶}
15: 𝑐′ = unary_closure(𝑃 , 𝜇, (𝑐𝑖,𝑗,𝐴 ∣ 𝐴 ∈ 𝑁))
16: (𝑐𝑖,𝑗,𝐴 ∶= 𝑐′

𝐴 ∣ 𝐴 ∈ 𝑁)
17: return (𝑐𝑖,𝑗 ∶= 𝐴 ↦ 𝑐𝑖,𝑗,𝐴 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛)



The CKY parsing algorithm + weights + chain rules

18: function unary_closure(𝑃, 𝜇, (𝑐𝐴 ∈ ℝ ∣ 𝐴 ∈ 𝑁))
19: queue ∶= {(𝐴, 𝑐𝐴) ∈ 𝑁 × ℝ ∣ 𝐴 ∈ 𝑁, 𝑐𝐴 ≠ 0}
20: (𝑐𝐴 ∶= 0 ∣ 𝐴 ∈ 𝑁)
21: while queue ≠ ∅ do
22: (𝐵, 𝑤) ∶= argmax(𝐵,𝑤)∈queue 𝑤
23: queue ∖= {(𝐵, 𝑤)}
24: if 𝑐𝐵 < 𝑤 then
25: queue ∪= {(𝐴, 𝜇(𝐴 → 𝐵) ⋅ 𝑤) ∣ 𝐴 → 𝐵 ∈ 𝑃}
26: 𝑐𝐵 ∶= 𝑤
27: return (𝑐𝐴 ∣ 𝐴 ∈ 𝑁)



About backtraces

▶ only best derivation:
▶ store at most one backtrace per span and nonterminal
▶ update when weight is updated

▶ recursively read trees from backtraces:
Require: family of backtraces (𝑏𝑖,𝑗,𝐴 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝐴 ∈ 𝑁), each otf. ⊥, or 𝐴 → 𝑡, or

(𝐴 → 𝐵, 𝑖, 𝑗) or (𝐴 → 𝐵𝐶, 𝑖, 𝑚, 𝑚, 𝑗)
1: function first_tree(𝑏, 𝑖, 𝑗, 𝐴)
2: if 𝑏𝑖,𝑗,𝐴 otf. 𝐴 → 𝑡 then return 𝐴 → 𝑡
3: else if 𝑏𝑖,𝑗,𝐴 otf. (𝐴 → 𝐵, 𝑖, 𝑗) then return (𝐴 → 𝐵)(first_tree(𝑏, 𝑖, 𝑗, 𝐵))
4: else if 𝑏𝑖,𝑗,𝐴 otf. (𝐴 → 𝐵𝐶, 𝑖, 𝑚, 𝑚, 𝑗) then
5: return (𝐴 → 𝐵𝐶)(first_tree(𝑏, 𝑖, 𝑚, 𝐵), first_tree(𝑏, 𝑚, 𝑗, 𝐶))



Let’s talk about data structures

▶ access to grammar rules depends on loops:
▶ access by first nonterminal on rhs Map<Nt, Set<(Rule, Wt)>>

▶ for some, that be no concern Set<(Rule, Wt)>

▶ weights for each nonterminal and span:
▶ usually in a ( |𝑤|⋅(|𝑤|+1)

2 ⋅ |𝑁|)-dimensional vector (dense) Vec<Wt>

▶ or hashmap (sparse) Map<(Int, Nt, Int), Wt>

▶ storing backtraces:
▶ each backtrace: applied rule and references to cells

Bt = Bin(Rule, [Int; 4])+ Chain(Rule, [Int; 2])+ Term(Rule)

▶ backtraces for each chart cell and nonterminal Vec<Set<Bt>>

▶ or do not store them at all
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Deduction systems [Ned03]

▶ rule-based system
▶ derive consequence (𝑐) from antecedents

(𝑎1, …, 𝑎𝑘) for some 𝑘 ∈ ℕ
▶ compute weight of consequence using weight of

antecedents (𝑤1, …, 𝑤𝑘)
▶ side condition 𝑏

𝑎1 ∶ 𝑤1, …, 𝑎𝑘 ∶ 𝑤𝑘
𝑐 ∶ 𝑓(𝑤1,…,𝑤𝑘) 𝑏



Deduction system for parsing weighted cfg [Ned03]

▶ item (𝑖, 𝐴, 𝑗) for each nonterminal 𝐴 spanning 𝑡𝑖…𝑡𝑗
▶ predict initial items (𝑖−1,𝐴,𝑖) ∶ 𝜇(𝐴⟶𝑡𝑖) 𝐴 → 𝑡𝑖 ∈ 𝑃 ∧ 𝑤 = 𝑡1…𝑡𝑖…𝑡𝑛

▶ combine items (𝑖0,𝐵1,𝑖1) ∶ 𝑤1,(𝑖1,𝐵2,𝑖2) ∶ 𝑤2,…,(𝑖𝑘−1,𝐵𝑘,𝑖𝑘) ∶ 𝑤𝑘
(𝑖0,𝐴,𝑖𝑘) ∶ 𝜇(𝐴→𝐵1…𝐵𝑘)⋅𝑤1⋯𝑤𝑘

𝐴 → 𝐵1…𝐵𝑘 ∈ 𝑃
▶ goal item: (0, 𝑆, |𝑤|)

▶ deduction system ⇝ weighted hypergraph
▶ edge from antecedents to consequence
▶ can be explored with respect weight
▶ hyperpaths to goal item correspond to parse

trees
(0, S, 7)

S → NP VP

(1, VP, 7)

VP → VP PP

……

(0, NP, 1)

NP → She



Weighted deductive parsing algorithm

Require: weighted binary cfg (𝑁, 𝛴, 𝑃, 𝑆, 𝜇), word 𝑡1…𝑡𝑛 where 𝑡1, …, 𝑡𝑛 ∈ 𝛴
Ensure: family of mappings (𝑐𝑖,𝑗 ∶ 𝑁 → ℝ ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛) such that

𝑐𝑖−1,𝑗(𝐴) = max{𝜇(𝑑) ∣ 𝑑 ∈ 𝐷𝐴
𝐺(𝑡𝑖…𝑡𝑗)} ∪ {0}

1: function deduce(𝑃, 𝜇, 𝑡1…𝑡𝑛)
2: queue ∶= {(𝑖 − 1, 𝐴, 𝑖, 𝜇(𝐴 → 𝑡𝑖)) ∣ 1 ≤ 𝑖 ≤ 𝑛, 𝐴 → 𝑡𝑖 ∈ 𝑃}
3: (𝑐𝑖,𝑗,𝐴 ∶= 0 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝐴 ∈ 𝑁)
4: while queue ≠ ∅ do
5: (𝑖, 𝐴, 𝑗, 𝑤) ∶= argmax(𝑖,𝐴,𝑗,𝑤)∈queue 𝑤
6: queue ∖= {(𝑖, 𝐴, 𝑗, 𝑤)}
7: if 𝑐𝑖,𝑗,𝐴 = 0 then
8: 𝑐𝑖,𝑗,𝐴 ∶= 𝑤
9: queue ∪= {(𝑖, 𝐴′, 𝑗′, 𝜇(𝐴′ → 𝐴𝐶) ⋅ 𝑤 ⋅ 𝑐𝑗,𝑗′,𝐶) ∣ 𝐴′ → 𝐴𝐶 ∈ 𝑃}

10: queue ∪= {(𝑖′, 𝐴′, 𝑗, 𝜇(𝐴′ → 𝐵𝐴) ⋅ 𝑐𝑖′,𝑖,𝐵 ⋅ 𝑤) ∣ 𝐴′ → 𝐵𝐴 ∈ 𝑃}
11: queue ∪= {(𝑖, 𝐴′, 𝑗, 𝜇(𝐴′ → 𝐴) ⋅ 𝑤) ∣ 𝐴′ → 𝐴 ∈ 𝑃}
12: return (𝑐𝑖,𝑗 ∶= 𝐴 ↦ 𝑐𝑖,𝑗,𝐴 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛)



Let’s talk about data structures … again

▶ access of grammar from each rhs nonterminal Map<Nt, Set<(Rule, Wt)>>

▶ each item may need to sotre a backtrace (Int, Nt, Int, Wt, Bt)

▶ storing the found items and their weights:
▶ access from left Map<(Int, Nt), Set<(Int, Nt, Int, Wt)>>

▶ access from right Map<(Nt, Int), Set<(Int, Nt, Int, Wt)>>

▶ storing backtraces:
▶ store applied rule and antecedent items

Bt = Bin(Rule, [Int; 4])+ Chain(Rule, [Int; 2])+ Term(Rule)

▶ set of backtraces for item Map<(UInt, Nt, UInt), Set<Bt>>

▶ or do not store them at all
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General Comments and Tips

▶ order of loops in CKY algorithm doesn’t matter that much, but1:
▶ may be used to cache-optimize,
▶ may lead to other optimizations

▶ deductive parsers may not need to expand the whole search space
▶ try to think about efficient access in your data structures

▶ don’t search in lists
▶ indexed access: maps
▶ check if you really need sets/maps
▶ flat data structures are faster than stacked heap allocations

▶ try not to over-engineer it

1Bodenstab [Bod09] discusses this in detail.
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