
Implementation of weighted cfg parsers

Thomas Ruprecht

Chair for foundations of programming
Institute for theoretical computer science

TU Dresden

April 30th

Outline

Overview

CKY parsing

Deductive parsing

Conclusion

Overview

read binary cfg from file

read word from stdin

weighted CKY parsing or deductive parsing

print best derivation tree

𝐺

𝐺, 𝑤

𝑑

Outline

Overview

CKY parsing

Deductive parsing

Conclusion

Weighted CKY parsing [CS70; Kas66; You67]

▶ requires cfg in Chomsky normal form
▶ fill chart from bottom to top
▶ each cell corresponds to span in word to parse
▶ add nonterminal to cell if partial derivation

yields span

▶ store best weight along with nonterminals
▶ close each cell with chain rules
▶ store backtrace (rule, reference to predecessor

cells) Trougnouf, “CYK algorithm: animation showing

every step of a sentence parsing”, 15 January

2018, via wikimedia.org

https://commons.wikimedia.org/wiki/File:CYK_algorithm_animation_showing_every_step_of_a_sentence_parsing.gif
https://commons.wikimedia.org/wiki/File:CYK_algorithm_animation_showing_every_step_of_a_sentence_parsing.gif
https://commons.wikimedia.org/wiki/File:CYK_algorithm_animation_showing_every_step_of_a_sentence_parsing.gif

The CKY parsing algorithm

Require: cfg 𝐺 = (𝑁, 𝛴, 𝑃, 𝑆) in Cnf, word 𝑡1…𝑡𝑛 where 𝑡1, …, 𝑡𝑛 ∈ 𝛴
Ensure: family of sets (𝑐𝑖,𝑗 ⊆ 𝑁 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛) such that 𝐴 ∈ 𝑐𝑖−1,𝑗 ⟺ 𝐷𝐴

𝐺(𝑡𝑖…𝑡𝑗) ≠ ∅
1: function cky(𝑃, 𝑡1…𝑡𝑛)
2: for 1 ≤ 𝑖 ≤ 𝑛 do
3: 𝑐𝑖−1,𝑖 ∶= {𝐴 ∣ 𝐴 → 𝑡𝑖 ∈ 𝑃}
4: for 2 ≤ 𝑟 ≤ 𝑛 do
5: for 0 ≤ 𝑖 ≤ 𝑛 − 𝑟 do
6: 𝑗 ∶= 𝑖 + 𝑟
7: 𝑐𝑖,𝑗 ∶= {𝐴 ∣ 𝑖 < 𝑚 < 𝑗, 𝐴 → 𝐵𝐶 ∈ 𝑃∶ 𝐵 ∈ 𝑐𝑖,𝑚, 𝐶 ∈ 𝑐𝑚,𝑗}
8: return (𝑐𝑖,𝑗 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛)

The CKY parsing algorithm

Require: cfg 𝐺 = (𝑁, 𝛴, 𝑃, 𝑆) in Cnf, word 𝑡1…𝑡𝑛 where 𝑡1, …, 𝑡𝑛 ∈ 𝛴
Ensure: family of sets (𝑐𝑖,𝑗 ∈ 𝑁 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛) such that 𝐴 ∈ 𝑐𝑖−1,𝑗 ⟺ 𝐷𝐴

𝐺(𝑡𝑖…𝑡𝑗) ≠ ∅
1: function cky(𝑃, 𝑡1…𝑡𝑛)
2: for 1 ≤ 𝑖 ≤ 𝑛 do
3: 𝑐𝑖−1,𝑖 ∶= ∅
4: for 𝐴 → 𝑡𝑖 ∈ 𝑃 do
5: 𝑐𝑖−1,𝑖 ∪= {𝐴}
6: for 2 ≤ 𝑟 ≤ 𝑛 do
7: for 0 ≤ 𝑖 ≤ 𝑛 − 𝑟 do
8: 𝑗 ∶= 𝑖 + 𝑟
9: 𝑐𝑖,𝑗 ∶= ∅

10: for 𝐴 ∈ 𝑁 do
11: for 𝑚 ∈ {𝑙 + 1, 𝑙 + 2, …, 𝑟 − 1} do
12: for 𝐴 → 𝐵𝐶 ∈ 𝑅 do
13: if 𝐵 ∈ 𝑐𝑖,𝑚 and 𝐶 ∈ 𝑐𝑚,𝑗 then
14: 𝑐𝑖,𝑗 ∪= {𝐴}
15: return (𝑐𝑖,𝑗 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛)

The CKY parsing algorithm + weights

Require: weighted cfg 𝐺 = (𝑁, 𝛴, 𝑃, 𝑆, 𝜇) in Cnf, word 𝑡1…𝑡𝑛 where 𝑡1, …, 𝑡𝑛 ∈ 𝛴
Ensure: family of mappings (𝑐𝑖,𝑗 ∶ 𝑁 → ℝ ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛) such that

𝑐𝑖−1,𝑗(𝐴) = max{𝜇(𝑑) ∣ 𝑑 ∈ 𝐷𝐴
𝐺(𝑡𝑖…𝑡𝑗)} ∪ {0}

1: function cky(𝑃, 𝜇, 𝑡1…𝑡𝑛)
2: for 1 ≤ 𝑖 ≤ 𝑛 do
3: 𝑐𝑖−1,𝑖 ∶= 𝐴 ↦ max{𝜇(𝐴 → 𝑡𝑖) ∣ 𝐴 → 𝑡𝑖 ∈ 𝑃} ∪ {0}
4: for 2 ≤ 𝑟 ≤ 𝑛 do
5: for 0 ≤ 𝑖 ≤ 𝑛 − 𝑟 do
6: 𝑗 ∶= 𝑖 + 𝑟
7: 𝑐𝑖,𝑗 ∶= 𝐴 ↦ max{𝜇(𝐴 → 𝐵𝐶) ⋅ 𝑐𝑖,𝑚(𝐵) ⋅ 𝑐𝑚,𝑗(𝐶) ∣ 𝑖 < 𝑚 < 𝑗, 𝐴 → 𝐵𝐶 ∈ 𝑃} ∪ {0}
8: return (𝑐𝑖,𝑗 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛)

The CKY parsing algorithm + weights

Require: weighted cfg (𝑁, 𝛴, 𝑃, 𝑆, 𝜇) in Cnf, word 𝑡1…𝑡𝑛 where 𝑡1, …, 𝑡𝑛 ∈ 𝛴
Ensure: family of mappings (𝑐𝑖,𝑗 ∶ 𝑁 → ℝ ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛) such that

𝑐𝑖−1,𝑗(𝐴) = max{𝜇(𝑑) ∣ 𝑑 ∈ 𝐷𝐴
𝐺(𝑡𝑖…𝑡𝑗)} ∪ {0}

1: function cky(𝑃, 𝜇, 𝑡1…𝑡𝑛)
2: (𝑐𝑖,𝑗,𝐴 ∶= 0 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝐴 ∈ 𝑁)
3: for 1 ≤ 𝑖 ≤ 𝑛 do
4: for 𝐴 → 𝑡𝑖 ∈ 𝑃 do
5: 𝑐𝑖−1,𝑖,𝐴 ∶= max{𝑐𝑖−1,𝑖,𝐴, 𝜇(𝐴 → 𝑡𝑖)}
6: for 2 ≤ 𝑟 ≤ 𝑛 do
7: for 0 ≤ 𝑖 ≤ 𝑛 − 𝑟 do
8: 𝑗 ∶= 𝑖 + 𝑟
9: for 𝐴 ∈ 𝑁 do

10: for 𝑚 ∈ {𝑖 + 1, 𝑖 + 2, …, 𝑗 − 1} do
11: for 𝐴 → 𝐵𝐶 ∈ 𝑅 do
12: 𝑐𝑖,𝑗,𝐴 ∶= max{𝑐𝑖,𝑗,𝐴, 𝜇(𝐴 → 𝐵𝐶) ⋅ 𝑐𝑖,𝑚,𝐵 ⋅ 𝑐𝑚,𝑗,𝐶}
13: return (𝑐𝑖,𝑗 ∶= 𝐴 ↦ 𝑐𝑖,𝑗,𝐴 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛)

The CKY parsing algorithm + weights + chain rules
Require: weighted binary cfg (𝑁, 𝛴, 𝑃, 𝑆, 𝜇), word 𝑡1…𝑡𝑛 where 𝑡1, …, 𝑡𝑛 ∈ 𝛴
Ensure: family of mappings (𝑐𝑖,𝑗 ∶ 𝑁 → ℝ ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛) such that

𝑐𝑖,𝑗(𝐴) = max{𝜇(𝑑) ∣ 𝑑 ∈ 𝐷𝐴
𝐺(𝑡𝑖…𝑡𝑗)} ∪ {0}

1: function cky(𝑃, 𝜇, 𝑡1…𝑡𝑛)
2: (𝑐𝑖,𝑗,𝐴 ∶= 0 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝐴 ∈ 𝑁)
3: for 1 ≤ 𝑖 ≤ 𝑛 do
4: for 𝐴 → 𝑡𝑖 ∈ 𝑃 do
5: 𝑐𝑖−1,𝑖,𝐴 ∶= max{𝑐𝑖−1,𝑖,𝐴, 𝜇(𝐴 → 𝑡𝑖)}
6: 𝑐′ = unary_closure(𝑃 , 𝜇, (𝑐𝑖−1,𝑖,𝐴 ∣ 𝐴 ∈ 𝑁))
7: (𝑐𝑖−1,𝑖,𝐴 ∶= 𝑐′

𝐴 ∣ 𝐴 ∈ 𝑁)
8: for 2 ≤ 𝑟 ≤ 𝑛 do
9: for 0 ≤ 𝑖 ≤ 𝑛 − 𝑟 do

10: 𝑗 ∶= 𝑖 + 𝑟
11: for 𝐴 ∈ 𝑁 do
12: for 𝑚 ∈ {𝑖 + 1, 𝑖 + 2, …, 𝑗 − 1} do
13: for 𝐴 → 𝐵𝐶 ∈ 𝑅 do
14: 𝑐𝑖,𝑗,𝐴 ∶= max{𝑐𝑖,𝑗,𝐴, 𝜇(𝐴 → 𝐵𝐶) ⋅ 𝑐𝑖,𝑚,𝐵 ⋅ 𝑐𝑚,𝑗,𝐶}
15: 𝑐′ = unary_closure(𝑃 , 𝜇, (𝑐𝑖,𝑗,𝐴 ∣ 𝐴 ∈ 𝑁))
16: (𝑐𝑖,𝑗,𝐴 ∶= 𝑐′

𝐴 ∣ 𝐴 ∈ 𝑁)
17: return (𝑐𝑖,𝑗 ∶= 𝐴 ↦ 𝑐𝑖,𝑗,𝐴 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛)

The CKY parsing algorithm + weights + chain rules

18: function unary_closure(𝑃, 𝜇, (𝑐𝐴 ∈ ℝ ∣ 𝐴 ∈ 𝑁))
19: queue ∶= {(𝐴, 𝑐𝐴) ∈ 𝑁 × ℝ ∣ 𝐴 ∈ 𝑁, 𝑐𝐴 ≠ 0}
20: (𝑐𝐴 ∶= 0 ∣ 𝐴 ∈ 𝑁)
21: while queue ≠ ∅ do
22: (𝐵, 𝑤) ∶= argmax(𝐵,𝑤)∈queue 𝑤
23: queue ∖= {(𝐵, 𝑤)}
24: if 𝑐𝐵 < 𝑤 then
25: queue ∪= {(𝐴, 𝜇(𝐴 → 𝐵) ⋅ 𝑤) ∣ 𝐴 → 𝐵 ∈ 𝑃}
26: 𝑐𝐵 ∶= 𝑤
27: return (𝑐𝐴 ∣ 𝐴 ∈ 𝑁)

About backtraces

▶ only best derivation:
▶ store at most one backtrace per span and nonterminal
▶ update when weight is updated

▶ recursively read trees from backtraces:
Require: family of backtraces (𝑏𝑖,𝑗,𝐴 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝐴 ∈ 𝑁), each otf. ⊥, or 𝐴 → 𝑡, or

(𝐴 → 𝐵, 𝑖, 𝑗) or (𝐴 → 𝐵𝐶, 𝑖, 𝑚, 𝑚, 𝑗)
1: function first_tree(𝑏, 𝑖, 𝑗, 𝐴)
2: if 𝑏𝑖,𝑗,𝐴 otf. 𝐴 → 𝑡 then return 𝐴 → 𝑡
3: else if 𝑏𝑖,𝑗,𝐴 otf. (𝐴 → 𝐵, 𝑖, 𝑗) then return (𝐴 → 𝐵)(first_tree(𝑏, 𝑖, 𝑗, 𝐵))
4: else if 𝑏𝑖,𝑗,𝐴 otf. (𝐴 → 𝐵𝐶, 𝑖, 𝑚, 𝑚, 𝑗) then
5: return (𝐴 → 𝐵𝐶)(first_tree(𝑏, 𝑖, 𝑚, 𝐵), first_tree(𝑏, 𝑚, 𝑗, 𝐶))

Let’s talk about data structures

▶ access to grammar rules depends on loops:
▶ access by first nonterminal on rhs Map<Nt, Set<(Rule, Wt)>>

▶ for some, that be no concern Set<(Rule, Wt)>

▶ weights for each nonterminal and span:
▶ usually in a (|𝑤|⋅(|𝑤|+1)

2 ⋅ |𝑁|)-dimensional vector (dense) Vec<Wt>

▶ or hashmap (sparse) Map<(Int, Nt, Int), Wt>

▶ storing backtraces:
▶ each backtrace: applied rule and references to cells

Bt = Bin(Rule, [Int; 4])+ Chain(Rule, [Int; 2])+ Term(Rule)

▶ backtraces for each chart cell and nonterminal Vec<Set<Bt>>

▶ or do not store them at all

Outline

Overview

CKY parsing

Deductive parsing

Conclusion

Deduction systems [Ned03]

▶ rule-based system
▶ derive consequence (𝑐) from antecedents

(𝑎1, …, 𝑎𝑘) for some 𝑘 ∈ ℕ
▶ compute weight of consequence using weight of

antecedents (𝑤1, …, 𝑤𝑘)
▶ side condition 𝑏

𝑎1 ∶ 𝑤1, …, 𝑎𝑘 ∶ 𝑤𝑘
𝑐 ∶ 𝑓(𝑤1,…,𝑤𝑘) 𝑏

Deduction system for parsing weighted cfg [Ned03]

▶ item (𝑖, 𝐴, 𝑗) for each nonterminal 𝐴 spanning 𝑡𝑖…𝑡𝑗
▶ predict initial items (𝑖−1,𝐴,𝑖) ∶ 𝜇(𝐴⟶𝑡𝑖) 𝐴 → 𝑡𝑖 ∈ 𝑃 ∧ 𝑤 = 𝑡1…𝑡𝑖…𝑡𝑛

▶ combine items (𝑖0,𝐵1,𝑖1) ∶ 𝑤1,(𝑖1,𝐵2,𝑖2) ∶ 𝑤2,…,(𝑖𝑘−1,𝐵𝑘,𝑖𝑘) ∶ 𝑤𝑘
(𝑖0,𝐴,𝑖𝑘) ∶ 𝜇(𝐴→𝐵1…𝐵𝑘)⋅𝑤1⋯𝑤𝑘

𝐴 → 𝐵1…𝐵𝑘 ∈ 𝑃
▶ goal item: (0, 𝑆, |𝑤|)

▶ deduction system ⇝ weighted hypergraph
▶ edge from antecedents to consequence
▶ can be explored with respect weight
▶ hyperpaths to goal item correspond to parse

trees
(0, S, 7)

S → NP VP

(1, VP, 7)

VP → VP PP

……

(0, NP, 1)

NP → She

Weighted deductive parsing algorithm

Require: weighted binary cfg (𝑁, 𝛴, 𝑃, 𝑆, 𝜇), word 𝑡1…𝑡𝑛 where 𝑡1, …, 𝑡𝑛 ∈ 𝛴
Ensure: family of mappings (𝑐𝑖,𝑗 ∶ 𝑁 → ℝ ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛) such that

𝑐𝑖−1,𝑗(𝐴) = max{𝜇(𝑑) ∣ 𝑑 ∈ 𝐷𝐴
𝐺(𝑡𝑖…𝑡𝑗)} ∪ {0}

1: function deduce(𝑃, 𝜇, 𝑡1…𝑡𝑛)
2: queue ∶= {(𝑖 − 1, 𝐴, 𝑖, 𝜇(𝐴 → 𝑡𝑖)) ∣ 1 ≤ 𝑖 ≤ 𝑛, 𝐴 → 𝑡𝑖 ∈ 𝑃}
3: (𝑐𝑖,𝑗,𝐴 ∶= 0 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝐴 ∈ 𝑁)
4: while queue ≠ ∅ do
5: (𝑖, 𝐴, 𝑗, 𝑤) ∶= argmax(𝑖,𝐴,𝑗,𝑤)∈queue 𝑤
6: queue ∖= {(𝑖, 𝐴, 𝑗, 𝑤)}
7: if 𝑐𝑖,𝑗,𝐴 = 0 then
8: 𝑐𝑖,𝑗,𝐴 ∶= 𝑤
9: queue ∪= {(𝑖, 𝐴′, 𝑗′, 𝜇(𝐴′ → 𝐴𝐶) ⋅ 𝑤 ⋅ 𝑐𝑗,𝑗′,𝐶) ∣ 𝐴′ → 𝐴𝐶 ∈ 𝑃}

10: queue ∪= {(𝑖′, 𝐴′, 𝑗, 𝜇(𝐴′ → 𝐵𝐴) ⋅ 𝑐𝑖′,𝑖,𝐵 ⋅ 𝑤) ∣ 𝐴′ → 𝐵𝐴 ∈ 𝑃}
11: queue ∪= {(𝑖, 𝐴′, 𝑗, 𝜇(𝐴′ → 𝐴) ⋅ 𝑤) ∣ 𝐴′ → 𝐴 ∈ 𝑃}
12: return (𝑐𝑖,𝑗 ∶= 𝐴 ↦ 𝑐𝑖,𝑗,𝐴 ∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛)

Let’s talk about data structures … again

▶ access of grammar from each rhs nonterminal Map<Nt, Set<(Rule, Wt)>>

▶ each item may need to sotre a backtrace (Int, Nt, Int, Wt, Bt)

▶ storing the found items and their weights:
▶ access from left Map<(Int, Nt), Set<(Int, Nt, Int, Wt)>>

▶ access from right Map<(Nt, Int), Set<(Int, Nt, Int, Wt)>>

▶ storing backtraces:
▶ store applied rule and antecedent items

Bt = Bin(Rule, [Int; 4])+ Chain(Rule, [Int; 2])+ Term(Rule)

▶ set of backtraces for item Map<(UInt, Nt, UInt), Set<Bt>>

▶ or do not store them at all

Outline

Overview

CKY parsing

Deductive parsing

Conclusion

General Comments and Tips

▶ order of loops in CKY algorithm doesn’t matter that much, but1:
▶ may be used to cache-optimize,
▶ may lead to other optimizations

▶ deductive parsers may not need to expand the whole search space
▶ try to think about efficient access in your data structures

▶ don’t search in lists
▶ indexed access: maps
▶ check if you really need sets/maps
▶ flat data structures are faster than stacked heap allocations

▶ try not to over-engineer it

1Bodenstab [Bod09] discusses this in detail.

[Bod09] Nathan Bodenstab. “Efficient Implementation of the cky algorithm”. In: Computational Linguistics,
Final Project Paper (2009).

[CS70] John Cocke and J. T. Schwartz. Programming languages and their compilers: Preliminary notes.
Tech. rep. Version 2nd. Courant Institute of Mathematical Sciences, New York University, Apr. 1970.

[HC05] Liang Huang and David Chiang. “Better k-best parsing”. In: Proceedings of the Ninth International
Workshop on Parsing Technology. Association for Computational Linguistics. 2005, pp. 53–64.

[Kas66] T. Kasami. An efficient recognition and syntax-analysis algorithm for context-free languages.
Tech. rep. R-257. AFCRL, Mar. 1966.

[Ned03] Mark-Jan Nederhof. “Weighted deductive parsing and Knuth’s algorithm”. In: Computational
Linguistics 29.1 (2003), pp. 135–143.

[You67] Daniel H. Younger. “Recognition and parsing of context-free languages in time n3”. In: Information
and Control 10.2 (Feb. 1967), pp. 189–208. doi: 10.1016/s0019-9958(67)80007-x.

https://doi.org/10.1016/s0019-9958(67)80007-x

	Overview
	CKY parsing
	Deductive parsing
	Conclusion
	References

