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Pruning

I During CKY or deductive parsing many items are explored which are not part of
the best derivation

I Idea: avoid items that are not part of the best derivation to speed up parsing

I Problem: How can we know these items in advance?

I Practical solution: Use simple methods but take the risk of finding suboptimal
derivation.
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Pruning for CKY parsing

Require: weighted binary cfg (N, Σ,P, S , µ), word t1 . . . tn where t1, . . . , tn ∈ Σ
Ensure: family (ci,j,A ∈ R | 0 ≤ i < j ≤ n,A ∈ N) such that, for all i , j ,A,

ci,j,A = max{µ(d) | d ∈ DA
G (ti+1 . . . tj)} ∪ {0}

1: function cky(P, µ, t1 . . . tn)
2: (ci,j,A := 0 | 0 ≤ i < j ≤ n,A ∈ N)
3: for 1 ≤ i ≤ n do
4: for A→ ti ∈ P do
5: ci−1,i,A := max{ci−1,i,A, µ(A→ ti )}
6: for 2 ≤ r ≤ n do
7: for 0 ≤ i ≤ n − r do
8: j := i + r
9: for m ∈ {i + 1, i + 2, . . . , j − 1} do

10: for B,C ∈ N do
11: for A ∈ N such that A→ BC ∈ R do
12: ci,j,A := max{ci,j,A, µ(A→ BC) · ci,m,B · cm,j,C}
13: return c
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Require: weighted binary cfg (N, Σ,P, S , µ), word t1 . . . tn where t1, . . . , tn ∈ Σ
Ensure: family (ci,j,A ∈ R | 0 ≤ i < j ≤ n,A ∈ N) such that, for all i , j ,A,

ci,j,A ≤ max{µ(d) | d ∈ DA
G (ti+1 . . . tj)} ∪ {0}

1: function cky(P, µ, t1 . . . tn)
2: (ci,j,A := 0 | 0 ≤ i < j ≤ n,A ∈ N)
3: for 1 ≤ i ≤ n do
4: for A→ ti ∈ P do
5: ci−1,i,A := max{ci−1,i,A, µ(A→ ti )}
6: (ci−1,i,A | A ∈ N) := prune((ci−1,i,A | A ∈ N))

7: for 2 ≤ r ≤ n do
8: for 0 ≤ i ≤ n − r do
9: j := i + r

10: for m ∈ {i + 1, i + 2, . . . , j − 1} do
11: for B,C ∈ N do
12: if ci,m,B = 0 or cm,j,C = 0 then continue

13: for A ∈ N such that A→ BC ∈ R do
14: ci,j,A := max{ci,j,A, µ(A→ BC) · ci,m,B · cm,j,C}
15: (ci,j,A | A ∈ N) := prune((ci,j,A | A ∈ N))

16: return c
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Pruning for CKY parsing

I Threshold beam
Require: family c = (ci,j,A ∈ R | A ∈ N), threshold θ ∈ [0, 1]
Ensure: family (ci,j,A ∈ R | A ∈ N)

1: function prune(c)
2: m = maxA∈N{ci,j,A | A ∈ N}
3: for A ∈ N do
4: if ci,j,A < m · θ then
5: ci,j,A := 0

6: return c

I Fixed-sized beam
Require: family c = (ci,j,A ∈ R | A ∈ N), size 1 ≤ n ≤ |N|
Ensure: family (ci,j,A ∈ R | A ∈ N)

1: function prune(c)
2: [s1, . . . , sn] = n−best{ci,j,A | A ∈ N}
3: for A ∈ N do
4: if ci,j,A < sn then
5: ci,j,A := 0

6: return c
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Pruning for CKY parsing– implementation considerations

I No changes to data structures required.
I More speed-ups might be obtained by not adding items to chart which for sure

would later be pruned:
I Threshold beam: store weight m of currently best item. If new item has weight m

below θ ·m, it is save to prune immediately.
I Fixed-size beam: store weights of the n best items. If the weight of new is below of

worst item, prune immediately.
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Pruning for deductive parsing

Require: weighted binary cfg (N, Σ,P, S , µ), word t1 . . . tn where t1, . . . , tn ∈ Σ
Ensure: family (ci,j,A : R | 0 ≤ i < j ≤ n,A ∈ N) such that

ci,j,A = max{µ(d) | d ∈ DA
G (ti+1 . . . tj)} ∪ {0}

1: function deduce(P, µ, t1 . . . tn)
2: queue := {(i − 1,A, i , µ(A→ ti )) | 1 ≤ i ≤ n,A→ ti ∈ P}
3: (ci,j,A := 0 | 0 ≤ i < j ≤ n,A ∈ N)
4: while queue 6= ∅ do
5: (i ,A, j ,w) := argmax(i,A,j,w)∈queue w
6: queue \= {(i ,A, j ,w)}
7: if ci,j,A = 0 then
8: ci,j,A := w
9: queue ∪= {(i ,A′, j ′, µ(A′ → AC) · w · cj,j′,C ) | A′ → AC ∈ P}

10: queue ∪= {(i ′,A′, j , µ(A′ → BA) · ci′,i,B · w) | A′ → BA ∈ P}
11: queue ∪= {(i ,A′, j , µ(A′ → A) · w) | A′ → A ∈ P}
12: return c
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Require: weighted binary cfg (N, Σ,P, S , µ), word t1 . . . tn where t1, . . . , tn ∈ Σ
Ensure: family (ci,j,A : R | 0 ≤ i < j ≤ n,A ∈ N) such that

ci,j,A ≤ max{µ(d) | d ∈ DA
G (ti+1 . . . tj)} ∪ {0}

1: function deduce(P, µ, t1 . . . tn)
2: queue := {(i − 1,A, i , µ(A→ ti )) | 1 ≤ i ≤ n,A→ ti ∈ P}
3: (ci,j,A := 0 | 0 ≤ i < j ≤ n,A ∈ N)
4: while queue 6= ∅ do
5: (i ,A, j ,w) := argmax(i,A,j,w)∈queue w
6: queue \= {(i ,A, j ,w)}
7: if ci,j,A = 0 then
8: ci,j,A := w
9: queue ∪= {(i ,A′, j ′, µ(A′ → AC) · w · cj,j′,C ) | A′ → AC ∈ P}

10: queue ∪= {(i ′,A′, j , µ(A′ → BA) · ci′,i,B · w) | A′ → BA ∈ P}
11: queue ∪= {(i ,A′, j , µ(A′ → A) · w) | A′ → A ∈ P}
12: prune(queue)

13: return c
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Pruning for deductive parsing

I Threshold beam
Require: set queue ⊆ N× N × N× R, threshold θ ∈ [0, 1]
Ensure: set queue′ ⊆ N× N × N× R
1: function prune(queue)
2: m = max(i,A,j,w)∈queue w
3: return {(i ,A, j ,w) ∈ queue | w > θ ·m}

I Fixed-sized beam
Require: set queue ⊆ N× N × N× R, size n ∈ N
Ensure: set queue′ ⊆ N× N × N× R
1: function prune(queue)
2: [i1, . . . , in] = n−best(queue) w.r.t
3: return {i1, . . . , in}
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Pruning for deductive parsing– implementation considerations

I Best implement queue as Min-max heap [Atk+86], because access to best and
worst elements is required.

I Again, don’t add items to queue if they would be pruned immediately.

I Alternatively, one can shrink the queue only occasionally and not in each iteration
of the main loop.

I Beware: Items for large spans are often more probable than items for small spans.
Risk of pruning “good” large items in favour of “bad” small items.

(Solution: see A*-star parsing below)
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k-best parsing

I Problem: syntactic ambiguity, e.g., “She saw the astronomer with the telescope.”

I “with the telescope” modifies “saw”
I “with the telescope” modifies “the astronomer“

I Goal: given a sentence w , a PCFG G , and a positive integer k, find the k most
probable derivations of G for w
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k-best parsing – näıve

Require: k ∈ N, weighted binary CFG (N, Σ, S ,R, µ), word t1 · · · tn
Ensure: k most probable parse trees of PCFG for t1 · · · tn
1: function kbest(k, R, µ, t1, . . . , tn)
2: b[i , j ,A] := [ ] for each cell (i , j ,A)
3: for i ∈ {0, . . . , n − 1} do
4: c := {(A(ti+1),w) | A→ ti+1 in R,w = µ(A→ ti+1)}
5: b[i , j ,A] = take(k, sort(c))

6: for z ∈ {2, . . . , n} do
7: for i ∈ {0, . . . , n − z} do
8: j := i + z
9: for A ∈ N do

10: c := {(A(d1, d2),w) | A→ BC in R,m ∈ {i + 1, . . . , j − 1},
(d1,w1) ∈ b[i ,m,B], (d2,w2) ∈ b[m, j ,C ],
w = µ(A→ BC) · w1 · w2}

11: b[i , j ,A] = take(k, sort(c))

12: return b[0, n, S ]
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k-best parsing – implementation of merging

10: c := {(A(d1, d2),w) | A→ BC ,m ∈ {i + 1, . . . , j − 1},
(d1,w1) ∈ b[i ,m,B], (d2,w2) ∈ b[m, j ,C ],
w = µ(A→ BC) · w1 · w2}

11: b[i , j ,A] = take(k, sort(c))

can be implemented as

10: b[i , j ,A] := [ ]
11: for m ∈ {i + 1, . . . , j − 1} do
12: for A→ BC in R do
13: c := {(A(d1, d2),w) | (d1,w1) ∈ b[i ,m,B], (d2,w2) ∈ b[m, j ,C ],

w = µ(A→ BC) · w1 · w2}
14: b[i , j ,A] := mergeAndTakeK(k, b[i , j ,A], c)
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k-best parsing – merging more efficient

2

2 ⇑

0

✄✂ ¡✁1 ⇒

1 2 4

(a)

2

2

✄✂ ¡✁3 ⇑

0 1

✄✂ ¡✁2 ⇒

1 2 4

(b)

2

2

✄✂ ¡✁3

✄✂ ¡✁4

0 1 2

✄✂ ¡✁4

1 2 4

(c)

10: b[i , j ,A] := [ ]
11: for m ∈ {i + 1, . . . , j − 1} do
12: for A→ BC in R do
13: denote wu,v := µ(A→ BC) · w 1

u · w 2
v where

(d1
u ,w

1
u ) := b[i ,m,B][u] and

(d2
v ,w

2
v ) := b[m, j ,C ][v ]

14: F := {(1, 1)}
15: while max(u,v)∈F wu,v > min(d,w)∈b[i,j,A] w or |b[i , j ,A]| < k do
16: (u, v) = argmax(u,v)∈Fwu,v

17: insertAndTakeK(k, (A(d1
u , d

2
v ),wu,v ), b[i , j ,A])

18: F := (F \ {(u, v)}) ∪ {(u + 1, v), (u, v + 1)}

[HC05]
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A*-parsing

I weighted deductive parsing computes for each item (i , j ,A) in the chart the
weight of the most probable derivation from A to ti+1 · · · tj .

I How about future costs, i.e., the weight of S ⇒∗G t1 · · · ti A tj+1 · · · tn?
I If future costs are taken into account, then maybe less items from the queue need

to be processed.

I Why?: Usually items with small spans are more probable than items with large spans.
I This is counteracted by future costs which are higher for items with small spans.

I Klein and Manning [KM03] propose several admissible heuristics.

I A heuristic may also be useful when pruning items during CKY parsing.
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A*-parsing– Viterbi outside score

We use the admissible heuristic out:

out(A) = max
d∈DG ,u,w∈Σ∗ : S

d⇒GuAw

weight(d)

It can be computed by a variant of the inside/outside algorithm:
1: function Inside
2: for A ∈ N do
3: in(A) := max({µ(A→ α) | A→ α ∈ R} ∪ {0})
4: while not converged do
5: for A ∈ N do
6: in(A) = max({in(A)} ∪ {µ(A→ BC) · in(B) · in(C) | A→ BC in R})
7: function Outside

8: set out(B) :=

{
1 B = S

0 otherwise
for each B ∈ N

9: while not converged do
10: for B ∈ N do
11: out(B) := max({out(B)} ∪ {out(A) · µ(A→ BC) · in(C) | A→ BC in R}

∪ {out(A) · µ(A→ CB) · in(C) | A→ CB in R})
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A*-parsing – parsing algorithm with heuristic

Require: weighted binary cfg (N, Σ,P, S , µ), word t1 . . . tn where t1, . . . , tn ∈ Σ
Ensure: family (ci,j,A : R | 0 ≤ i < j ≤ n,A ∈ N) such that

ci,j,A = max{µ(d) | d ∈ DA
G (ti+1 . . . tj)} ∪ {0}

1: function deduce(P, µ, t1 . . . tn)
2: queue := {(i − 1,A, i , µ(A→ ti )) | 1 ≤ i ≤ n,A→ ti ∈ P}
3: (ci,j,A := 0 | 0 ≤ i < j ≤ n,A ∈ N)
4: while queue 6= ∅ do
5: (i ,A, j ,w) := argmax(i,A,j,w)∈queue w · out(A)
6: queue \= {(i ,A, j ,w)}
7: if ci,j,A = 0 then
8: ci,j,A := w
9: queue ∪= {(i ,A′, j ′, µ(A′ → AC) · w · cj,j′,C ) | A′ → AC ∈ P}

10: queue ∪= {(i ′,A′, j , µ(A′ → BA) · ci′,i,B · w) | A′ → BA ∈ P}
11: queue ∪= {(i ,A′, j , µ(A′ → A) · w) | A′ → A ∈ P}
12: return c
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