Optimizations and Extensions for Weighted CFG Parsers

Kilian Gebhardt

Chair for foundations of programming
Institute for theoretical computer science
TU Dresden

2019-06-04

1/21

Outline

Pruning
Pruning for CKY parsing
Pruning for deductive parsing

2/21

Pruning

» During CKY or deductive parsing many items are explored which are not part of
the best derivation

3/21

Pruning

» During CKY or deductive parsing many items are explored which are not part of
the best derivation

» Idea: avoid items that are not part of the best derivation to speed up parsing

3/21

Pruning

» During CKY or deductive parsing many items are explored which are not part of
the best derivation

» Idea: avoid items that are not part of the best derivation to speed up parsing

» Problem: How can we know these items in advance?

3/21

Pruning

» During CKY or deductive parsing many items are explored which are not part of
the best derivation

» Idea: avoid items that are not part of the best derivation to speed up parsing
» Problem: How can we know these items in advance?

» Practical solution: Use simple methods but take the risk of finding suboptimal
derivation.

3/21

Pruning for CKY parsing

Require: weighted binary cfg (N, X, P, S, u), word t1...t, where t1,...,t, € ¥
Ensure: family (¢cija € R|0<i<j<n A€ N)such that, for all i,j, A,
cija = max{p(d) | d € D¢(tis1 ...)} U {0}

1: function CKY(P, u, ti...tn)

2 (cija:=0]0<i<j<nAeN)

3 for 1 <i<ndo

4 for A= t; € P do

5: Ci—1,i,A = max{c,-,l,,-,A, ,LL(A — t;)}

6 for2<r<ndo

7 for0<i<n-rdo

8

: ji=i+r
9: forme {i+1,i+2,...,j—1} do
10: for B,C € N do
11: for A€ N such that A— BC € R do
12: Cij,A = max{c,-,j,A,u(A — BC) © Ci,m,B " Cmyj,c}
13: return ¢

4/21

Pruning for CKY parsing

Require: weighted binary cfg (N, X, P, S, u), word t1...t, where t1,...,t, € ¥
Ensure: family (¢cija € R|0<i<j<n A€ N)such that, for all /,j, A,
cija < max{p(d) | d € D¢(tis1 ...)} U{0}

1: function CKY(P, u, ti...tn)

2 (cija:=0]0<i<j<nAecN)

3 for 1 <i<ndo

4: for A=t € P do

5: Ci—1,i,A = InaJX{C,;l,,',A7 ,LL(A — t;)}

6 (ci—1,ia | A€ N) :=prune((ci—1,ia | A € N))

7 for2<r<ndo

8: for0<i<n-rdo

9: ji=i+r

10: forme{i+1,i+2,...,j—1} do

11: for B,C € N do

12: if ¢i,ms =0 or cm,j,c = 0 then continue

13: for A € N such that A— BC € R do

14: Gija=max{cja, (A— BC):Cimp: Cmjc}
15: (cija| A€ N):=prune((cija|AcN))

16: return c

5/21

Pruning for CKY parsing

» Threshold beam
Require: family ¢ = (c¢ija € R| A € N), threshold 6 € [0, 1]
Ensure: family (¢cija € R|Ae N)
1: function PRUNE(c)

2: m = maerN{c;,j,A | Ac N}
3 for Ac N do

4. if CijAa<m: 0 then

5: C,'ﬂ_,',A = 0

6 return ¢

6/21

Pruning for CKY parsing

» Threshold beam
Require: family ¢ = (c¢ija € R| A € N), threshold 6 € [0, 1]
Ensure: family (¢cija € R|Ae N)

1: function PRUNE(c)

2: m = maxaen{cija| A€ N}
3 for Ae N do

4: if ¢ija < m-0 then

5: C,',_,',A = 0

6: return ¢

> Fixed-sized beam
Require: family ¢ = (¢ija € R| A€ N), sizel1 < n < |N|
Ensure: family (¢ija € R| A€ N)
1: function PRUNE(c)

2: [s1,...,s1] = n—Dbest{cija|Ac N}
3: for Ac N do

4: if ¢ija < s, then

5: cijai=0

6 return c

6/21

Pruning for CKY parsing— implementation considerations

» No changes to data structures required.

» More speed-ups might be obtained by not adding items to chart which for sure
would later be pruned:

» Threshold beam: store weight m of currently best item. If new item has weight m
below 6 - m, it is save to prune immediately.

» Fixed-size beam: store weights of the n best items. If the weight of new is below of
worst item, prune immediately.

7/21

Pruning for deductive parsing

Require: weighted binary cfg (N, X, P, S, u), word t1...t, where t1,...,t, € ¥
Ensure: family (cija: R|0<i<j<n,A€ N)such that
cGija=max{u(d)|de Dé(ti+1 ... t))tu {0}

1: function DEDUCE(P, , ti...tn)

2 queue .= {(i — LA i,u(A—=t:))|1<i<nA—t€P}

3 (C,',J',AZ:0|0§I'<j§n,A€N)

4: while queve # @ do
5: (i, A j,w) = argmasx
6.
7
8

i,A,j,w)€E queue w
queue \= {(i, A, j, w)}
if CijA= 0 then
. Cij,A =W
9: queue U= {(i, A, j', (A" = AC)-w - ¢ y.c) | A — AC € P}
10: queuve U= {(i", A", j, (A" = BA) - ¢ ig-w) | A — BA € P}
11: queue U= {(i, A", j,u(A" = A)-w) | A" — A€ P}

12: return ¢

8/21

Pruning for deductive parsing

Require: weighted binary cfg (N, X, P, S,), word t...t, where t1,...,t, € X
Ensure: family (¢ija: R|0<i<j<n A€ N)such that
CijA< max{,u(d) ‘ de Dé(t,url e tj)} @] {0}

1: function DEDUCE(P, u, t1...ty)

2 queuve == {(i— LA ,u(A—=t))|1<i<nA—t €P}

3 (Ci,j,AZ:0|0§i<j§n,A€N)

4. while queve # @ do
5: (i, A j,w) = argmax
6.
-
8

i,A,j,w)€Equeue w
queue \= {(i, A j, w)}
if Cij,A= 0 then
: C,‘JﬂA = w

9: queve U= {(i, A", j', (A" = AC)-w - ¢ j.c) | A — AC € P}
10: queue U= {(i', A", j, (A" = BA) - ¢ ;g -w) | A — BA € P}
11: queuve U= {(i, A" j, (A" = A)-w) | A — A€ P}
12: prune(queue)
13: return ¢

9/21

Pruning for deductive parsing

» Threshold beam

Require: set queue C N x N x N x R, threshold 6 € [0, 1]
Ensure: set queue’ CN x N x N x R

1: function PRUNE(queue)

2: m = max(; Ajw)equeve W

3: return {(i,A,j,w) € queue | w >0 - m}

10/21

Pruning for deductive parsing

» Threshold beam

Require: set queue C N x N x N x R, threshold 6 € [0, 1]
Ensure: set queue’ CN x N x N x R

1: function PRUNE(queue)

2: m = max(; Ajw)equeve W

3: return {(i,A,j,w) € queue | w >0 - m}

P Fixed-sized beam
Require: set queue C N X N X N x R, size n € N
Ensure: set queue’ CN x N x N x R
1: function PRUNE(queue)
2: [i1,...,in] = n—best(queue) w.r.t
3: return {i1,..., i}

10/21

Pruning for deductive parsing— implementation considerations

» Best implement queue as Min-max heap [Atk+86], because access to best and
worst elements is required.

11/21

Pruning for deductive parsing— implementation considerations

» Best implement queue as Min-max heap [Atk+86], because access to best and
worst elements is required.

» Again, don't add items to queue if they would be pruned immediately.

11/21

Pruning for deductive parsing— implementation considerations

» Best implement queue as Min-max heap [Atk+86], because access to best and
worst elements is required.

» Again, don't add items to queue if they would be pruned immediately.

P Alternatively, one can shrink the queue only occasionally and not in each iteration
of the main loop.

11/21

Pruning for deductive parsing— implementation considerations

» Best implement queue as Min-max heap [Atk+86], because access to best and
worst elements is required.

» Again, don't add items to queue if they would be pruned immediately.

P Alternatively, one can shrink the queue only occasionally and not in each iteration
of the main loop.

» Beware: ltems for large spans are often more probable than items for small spans.
Risk of pruning “good” large items in favour of “bad” small items.

11/21

Pruning for deductive parsing— implementation considerations

» Best implement queue as Min-max heap [Atk+86], because access to best and
worst elements is required.

» Again, don't add items to queue if they would be pruned immediately.

P Alternatively, one can shrink the queue only occasionally and not in each iteration
of the main loop.

» Beware: ltems for large spans are often more probable than items for small spans.
Risk of pruning “good” large items in favour of “bad” small items.

11/21

Pruning for deductive parsing— implementation considerations

» Best implement queue as Min-max heap [Atk+86], because access to best and
worst elements is required.

» Again, don't add items to queue if they would be pruned immediately.

P Alternatively, one can shrink the queue only occasionally and not in each iteration
of the main loop.

» Beware: ltems for large spans are often more probable than items for small spans.
Risk of pruning “good” large items in favour of “bad” small items.
(Solution: see A*-star parsing below)

11/21

Outline

k-best parsing

12/21

k-best parsing

» Problem: syntactic ambiguity, e.g., “She saw the astronomer with the telescope.”

13/21

k-best parsing

» Problem: syntactic ambiguity, e.g., “She saw the astronomer with the telescope.”
» “with the telescope” modifies “saw”

13/21

k-best parsing

» Problem: syntactic ambiguity, e.g., “She saw the astronomer with the telescope.”

» “with the telescope” modifies “saw”
P> ‘“with the telescope” modifies “the astronomer"

13/21

k-best parsing

» Problem: syntactic ambiguity, e.g., “She saw the astronomer with the telescope.”

» “with the telescope” modifies “saw”
P> ‘“with the telescope” modifies “the astronomer"

» Goal: given a sentence w, a PCFG G, and a positive integer k, find the k most
probable derivations of G for w

13/21

k-best parsing — naive

Require: k € N, weighted binary CFG (N, X, S, R, u), word t1 - - -t
Ensure: k most probable parse trees of PCFG for t - - t,

1: function KBEST(k, R, {, ti,..., ts)

2: b[i,j, Al ;=[] for each cell (i,j, A)

3: for i€ {0,...,n—1} do

4: c:={(A(ti+1),w) | A= tiz1 in Ryw = u(A = tiq1)}

5: b[i,j, A] = take(k,sort(c))

6: for z € {2,...,n} do

7: for i€ {0,...,n—z} do

8: Jji=i+z

9: for Ac N do

10: c:={(Aldh,db),w) | A= BCin Rome {i+1,...,j—1},
(dl, W1) € b[i, m, B], (C]’z7 W2) S b[m,j, C],
w=u(A— BC) wi wy}

11: b[i,j, A] = take(k,sort(c))

12: return b[0, n, S]

14/21

k-best parsing — implementation of merging

10: ¢:={(A(di,db),w) |A—-BC,me {i+1,...,j—1},
(di,wr) € b[i,m, B], (dz, w2) € b[m,], C],
w=u(A— BC) -wi w}

11: b[i,j, A] = take(k,sort(c))

can be implemented as

10: b[i,j,Al :=[]
11: forme {i+1,...,j—1} do
12: for A— BC in R do

13: c = {(A(d17 d2)7 W) | (d17 Wl) € b[’7 m, B]7 (d27 W2) € b[m7j7 C]7
w=u(A— BC) wi-w}
14: b[i,j, Al := mergeAndTakeK(k, b[i,j, A], c)

15/21

k-best parsing — merging more efficient

10:
11:
12:
13:

14:
15:
16:
17:
18:

2 2 2

21 2[3]] 0 2([(3)][4

ol ol 1102]= ol 1] 2[4
L T 1]2]4] L T77274] [[1]2]4]

bli,j, Al :=]

(a)

forme{i+1,...,j—1} do
for A— BC in R do
denote w,,, := (A — BC) - w. - w2 where

(di, wl) := b[i, m, B][u] and
(d\%v W\?) = b[mvjv C][V]

={(1,1)}

while max,, yeF Wu,v > Min(g wycsi,j,a] W or |b[i, j, A]| < k do

(U7 V) = argmax, vyerFWu,v
insertAndTakeK (k, (A(d},d2), wu), bli,j,A])
Fi=(F\{(e,)} U{(u+1,v),(u,v+ 1)}

(b)

©

[HCO5]

16/21

Outline

A*-parsing

17/21

A*-parsing

> weighted deductive parsing computes for each item (i,j, A) in the chart the
weight of the most probable derivation from A to ti;q---t;.

18/21

A*-parsing

> weighted deductive parsing computes for each item (i,j, A) in the chart the
weight of the most probable derivation from A to ti;q---t;.

» How about future costs, i.e., the weight of S = t1---t; Atjp1---t,?

18/21

A*-parsing

> weighted deductive parsing computes for each item (i,j, A) in the chart the
weight of the most probable derivation from A to ti;q---t;.

» How about future costs, i.e., the weight of S = t1---t; Atjp1---t,?

» If future costs are taken into account, then maybe less items from the queue need
to be processed.

18/21

A*-parsing

> weighted deductive parsing computes for each item (i,j, A) in the chart the
weight of the most probable derivation from A to ti;q---t;.

» How about future costs, i.e., the weight of S = t1---t; Atjp1---t,?

» If future costs are taken into account, then maybe less items from the queue need
to be processed.

» Why?: Usually items with small spans are more probable than items with large spans.

18/21

A*-parsing

> weighted deductive parsing computes for each item (i,j, A) in the chart the
weight of the most probable derivation from A to ti;q---t;.

» How about future costs, i.e., the weight of S = t1---t; Atjp1---t,?

» If future costs are taken into account, then maybe less items from the queue need
to be processed.

» Why?: Usually items with small spans are more probable than items with large spans.
» This is counteracted by future costs which are higher for items with small spans.

18/21

A*-parsing

> weighted deductive parsing computes for each item (i,j, A) in the chart the
weight of the most probable derivation from A to ti;q---t;.
» How about future costs, i.e., the weight of S = t1---t; Atjp1---t,?

» If future costs are taken into account, then maybe less items from the queue need
to be processed.

» Why?: Usually items with small spans are more probable than items with large spans.
» This is counteracted by future costs which are higher for items with small spans.

» Klein and Manning [KMO3] propose several admissible heuristics.

18/21

A*-parsing

> weighted deductive parsing computes for each item (i,j, A) in the chart the
weight of the most probable derivation from A to ti;q---t;.

» How about future costs, i.e., the weight of S = t1---t; Atjp1---t,?

» If future costs are taken into account, then maybe less items from the queue need
to be processed.

» Why?: Usually items with small spans are more probable than items with large spans.
» This is counteracted by future costs which are higher for items with small spans.

» Klein and Manning [KMO3] propose several admissible heuristics.

» A heuristic may also be useful when pruning items during CKY parsing.

18/21

A*-parsing— Viterbi outside score

We use the admissible heuristic out:

out(A) = max weight(d)
deDg,u,weX*: S:d>GuAW

It can be computed by a variant of the inside/outside algorithm:

1: function INSIDE
2 for Ac N do
3 in(A) := max({u(A = o) | A= a € R} U{0})
4 while not converged do
b: for Ac N do
6: in(A) = max({in(A)} U {u(A — BC) -in(B) -in(C) | A— BC in R})
7: function OUTSIDE
1 B=S
8 set out(B) := . foreach Be N
0 otherwise
9 while not converged do
0 for B N do
1 out(B) := max({out(B)} U {out(A) - u(A — BC) -in(C) | A— BC in R}
U {out(A) - u(A — CB) -in(C) | A— CB in R})

19/21

A*-parsing — parsing algorithm with heuristic

Require: weighted binary cfg (N, X, P, S, u), word t1...t, where t1,...,t, € ¥
Ensure: family (cija: R|0<i<j<n,A€ N)such that
cGija=max{u(d)|de Dé(ti+1 ... t))tu {0}

1: function DEDUCE(P, , ti...tn)

2 queue .= {(i — LA i,u(A—=t:))|1<i<nA—t€P}

3 (C,',J',AZ:0|0§I'<an,A€N)

4: while queve # @ do
5: (i, A j,w) = argmasx
6.
7
8

i,A,j,w)€Equeue w - ()llt(A)
queue \= {(i, A, j, w)}
if CijA= 0 then
. Cij,A =W
9: queue U= {(i, A", j', (A" = AC)-w ¢ y.c) | A — AC € P}
10: queve U= {(i", A", j, (A" = BA) ¢ ig-w) | A= BA € P}
11: queue U= {(i, A", j,u(A" = A)-w) | A" — A€ P}

12: return ¢

20/21

[Atk+86]

[HCO5]

[KMO03]

M. D. Atkinson et al. “Min-max Heaps and Generalized Priority Queues”. In: Commun. ACM 29.10
(Oct. 1986), pp. 996—1000. 1ssN: 0001-0782. DOI: 10.1145/6617.6621. URL:
http://doi.acm.org/10.1145/6617.6621.

Liang Huang and David Chiang. “Better k-best parsing”. In: Proceedings of the Ninth International
Workshop on Parsing Technology. Association for Computational Linguistics. 2005, pp. 53-64.

Dan Klein and Christopher D. Manning. “A* Parsing: Fast Exact Viterbi Parse Selection”. In:
Proceedings of the 2003 Human Language Technology Conference of the North American Chapter
of the Association for Computational Linguistics. 2003, pp. 119-126. URL:
https://www.aclweb.org/anthology/N03-1016.

21/21

https://doi.org/10.1145/6617.6621
http://doi.acm.org/10.1145/6617.6621
https://www.aclweb.org/anthology/N03-1016

	Pruning
	Pruning for CKY parsing
	Pruning for deductive parsing

	k-best parsing
	A*-parsing
	References

