9. Übung (July 4, 2016)

Formale Baumsprachen

Thirteenth MT Marathon 2018. Organized by the Institute of Formal and Applied Linguistics, Charles University, Machine Translation Marathon 2018 is a week long gathering of machine translation researchers, developers, students and users. It features:

- MT Lectures and Labs covering the basics and tutorials.
- Keynote Talks from experienced researchers and practitioners.
- Presentations of open source tools related to MT.
- Hacking Projects to advance tools or research in one week or start new collaborations.

Task 20 (construction for Rec \subseteq Rat)
Consider the ranked alphabet $\Sigma=\left\{\alpha^{(0)}, \gamma^{(1)}\right\}$.
(a) Give sets N and P such that the regular tree grammar $G=(N, \Sigma, Z, P)$ is in normal form and recognizes

$$
L=\left\{\xi \in T_{\Sigma} \mid \text { the number of occurrences of } \gamma \text { in } \xi \text { is not divisible by } 3\right\} .
$$

(b) Convince yourself that $L_{Z, \emptyset}^{N}=L$ using the following definition and property:

Definition. For every $Q, K \subseteq N$ such that $Q \cap K=\emptyset$, and for every $A \in N$:
$L_{A, K}^{Q}=\left\{\xi \in T_{\Sigma}(K) \mid\right.$ there is a derivation $A \Rightarrow_{G} \xi_{1} \Rightarrow_{G} \ldots \Rightarrow_{G} \xi_{n} \Rightarrow_{G} \xi_{n+1}=\xi$ with $n \geq 0$ such that for every $i \in[n]: \xi_{i} \in T_{\Sigma}(Q \cup K)$ and a rule with left-hand side in Q is applied to ξ_{i} to obtain $\left.\xi_{i+1}\right\}$

Property. For every $Q, K \subseteq N$ and $A, B \in N$ such that $B \in N \backslash Q$ and $(Q \cup\{B\}) \cap K=\emptyset:$

$$
L_{A, K}^{Q \cup\{B\}}=L_{A, K \cup\{B\}}^{Q} \cdot{ }_{B}\left(L_{B, K \cup\{B\}}^{Q}\right)_{B}^{*} \cdot{ }_{B} L_{B, K}^{Q}
$$

Task 21 (local tree languages [Com+08, Exercise 2.5])

Definition. Let Σ be a ranked alphabet. For every $\xi \in T_{\Sigma}$, the fork of ξ is the set fork $(\xi)=\left\{\left(\sigma, \sigma_{1} \cdots \sigma_{k}\right) \in \Sigma \times \Sigma^{*} \mid \rho \in \operatorname{pos}(\xi), \xi(\rho)=\sigma, k=\operatorname{rank}(\sigma), \forall i \in[k]: \xi(\rho i)=\sigma_{i}\right\}$.

A tree language $L \subseteq T_{\Sigma}$ is called local if there are sets $F \subseteq \Sigma$ and $G \subseteq \operatorname{fork}\left(T_{\Sigma}\right)$ such that $\xi \in L$ iff $(\xi(\varepsilon) \in F) \wedge(\operatorname{fork}(\xi) \subseteq G)$.
(a) Prove that every local tree language is regular.
(b) Prove that a language is local iff it is the set of parse trees of a context-free string grammar.

Task 22 (path languages [Com+08, Exercise 2.8])

Definition. Let Σ be a ranked alphabet. For every $\xi=\sigma\left(\xi_{1}, \ldots, \xi_{k}\right) \in T_{\Sigma}$, the set of paths of ξ is recursively defined by

$$
\begin{aligned}
\operatorname{Paths}(\sigma) & =\{\sigma\}, & \text { and } \\
\operatorname{Paths}\left(\sigma\left(\xi_{1}, \ldots, \xi_{k}\right)\right) & =\{\sigma\} \cdot \bigcup_{i \in[k]} \operatorname{Paths}\left(\xi_{k}\right) & \text { if } k>0 .
\end{aligned}
$$

(a) Prove that $\operatorname{Paths}(L)=\bigcup_{\xi \in L} \operatorname{Paths}(\xi)$ is regular for every regular tree language L.
(b) What about the converse?

References

[Com+08] Hubert Comon, Max Dauchet, Rémi Gilleron, Christof Löding, Florent Jacquemard, Denis Lugiez, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and Applications. Nov. 18, 2008. url: http://tata.gforge.inria.fr/.

