Task 18 (relabelings)

(a) Show that any relabeling preserves the image under pos.

Let \varSigma and \varDelta be ranked alphabets.

- (b) Under which conditions is there a relabeling between trees over Σ and trees over Δ ?
- (c) Let τ be a relabeling between trees over Σ and trees over Δ . Now consider $\sigma \in \Sigma, \xi \in T_{\Sigma}$, and $L \subseteq T_{\Sigma}$. Quantify τ in the following expressions:

(i) $\tau(\sigma)$, (ii) $\tau(\xi)$, and (iii) $\tau(L)$.

Task 19 (construction of Bar-Hillel, Perles, and Shamir)

Consider the ranked alphabet $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}, \lambda^{(0)}\}$ and the fta $\mathcal{A} = (Q, \Sigma, \delta, F)$ where $Q = \{e, o\}, F = \{e\}$, and

$$\delta_{\alpha} = \delta_{\beta} = \delta_{\gamma} = \{(\varepsilon, o)\}, \qquad \delta_{\sigma} = \{(oo, e), (ee, o)\}.$$

Moreover, let us assume an fsa $\mathcal{B} = (P, \Delta, p, \mu, G)$ where $\Delta = \Sigma^{(0)} \setminus \{\lambda\}, P = \{p, r\}, G = \{r\},$ and

$$\mu=\{(p,\alpha,p),(p,\beta,r),(r,\beta,r)\}.$$

Using the technique from the lecture, construct an fta \mathcal{A}' such that

$$L(\mathcal{A}') = L(\mathcal{A}) \cap \text{yield}_{\lambda}^{-1}(L(\mathcal{B})).$$