7. Übung (20. Juni 2018)

Formale Baumsprachen

Task 16 (closure of Rec under intersection, union, and complement)

Let $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}, \beta^{(0)}\}$ be a ranked alphabet. Consider the following recognizable tree languages

$L_1 = \{\xi \in T_\Sigma \mid \text{for every } w \in \text{pos}(\xi): w \in \{2\}^* \text{ if and only if } \xi(w) \in \{\sigma, \alpha\}\}$ and
$L_2 = \{\xi \in T_\Sigma \mid \text{for every } w \in \text{pos}(\xi): \xi(w) = \alpha \text{ only if } |w| \equiv 0 \pmod{2}\}$.

Find finite representations for the following languages:

(a) L_1
(b) L_2
(c) $L_1 \cup L_2$
(d) $L_1 \cap L_2$
(e) $T_\Sigma \setminus L_1$

Task 17 (concatenation and Kleene star for recognizable tree languages)

Let Σ be a ranked alphabet.

(a) Show that $\text{Rec}(\Sigma)$ is closed under top concatenation without using the fact that it is closed under tree concatenation.

(b) Why can we not use the closure of $\text{Rec}(\Sigma)$ under tree concatenation to prove the closure under Kleene star?

Prove or refute the following two statements:

(c) For every $\alpha \in \Sigma^{(0)}$, the binary operation \cdot_α is associative. Assume that \cdot_α distributes over \cup.

(d) $(L_1 \cdot_\alpha L_2) \cdot_\beta L_3 = L_1 \cdot_\alpha (L_2 \cdot_\beta L_3)$ for arbitrary $L_1, L_2, L_3 \in \text{Rec}(\Sigma)$ and $\alpha, \beta \in \Sigma^{(0)}$.

Let $\Delta = \{\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}\}$ be a ranked alphabet.

(e) Using the construction from the lecture, show that $\{\sigma(\alpha, \beta)\}_\beta \cdot_\beta \{\alpha\} \in \text{Rec}(\Sigma)$.