Task 9 (td-det fta)

Let $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}, \gamma^{(0)}\}$. Give a nondeterministic bu-ta which accepts exactly the language of all $\xi \in T_{\Sigma}$ containing a β -leaf somewhere between an α - and a γ -leaf, reading leaves left-to-right or right-to-left. Try to use as few states and transitions as possible.

Task 10 (Nondeterministic td-ta)

For each of the following tree languages, give a td-ta which accepts exactly that language. Which of these languages can be accepted by some deterministic td-ta?

- (a) $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}\}$ and $L = \{\xi \in \mathcal{T}_{\Sigma} \mid \xi \text{ contains at least one } \alpha \text{ and one } \beta\}.$
- (b) $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}\}$ and $L = \{\xi \in \mathcal{T}_{\Sigma} \mid \xi \text{ contains an even number of } \alpha \text{ symbols}\}.$
- (c) $\Sigma = \{\alpha^{(1)}, \beta^{(1)}, \gamma^{(1)}, \epsilon^{(0)}\}$ and $L = \{\xi \in \mathcal{T}_{\Sigma} \mid \xi \text{ contains an } \alpha \text{ somewhere above a } \beta \text{ or a } \beta \text{ somewhere above a } \gamma\}.$

Task 11 (regular tree grammars)

Let $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}$ be a ranked alphabet. Give regular tree grammars G_1 and G_2 with

- (a) $L(G_1) = \{\xi \in T_{\Sigma} \mid \xi \text{ contains exactly one } \sigma\}$ and
- (b) $L(G_2) = \{\xi \in T_{\Sigma} \mid \xi \text{ contains the pattern } \sigma(_, \gamma(_)) \text{ at least twice} \}.$