Formale Baumsprachen

Task 6 (bu-det fta)

Let $\Sigma = {\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}}$ and $\Delta = {\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}}$ be ranked alphabets. Give deterministic buta \mathcal{A}_1 , \mathcal{A}_2 , and \mathcal{A}_3 that recognize L_1 , L_2 , and L_3 , respectively, where

- (a) $L_1 = \{ \xi \in T_{\Sigma} \mid \xi \text{ contains at least one } \alpha \text{ and one } \beta \},$
- (b) $L_2 = \{ \xi \in T_{\Sigma} \mid \xi \text{ contains an even number of } \alpha \text{ symbols} \}$, and
- $\text{(c)} \ \ L_3 = \big\{ \sigma(t_1, \sigma(t_2, ... \sigma(t_n, \alpha)...)) \in T_\Delta \mid n \in \mathbb{N}, t_1, ..., t_n \in T_{\{\gamma^{(1)}, \alpha^{(0)}\}} \big\}.$

Task 7 (string automata)

Recall the concept of string automata. Let Σ be an alphabet and $\# \notin \Sigma$. We define the ranked alphabet $\Sigma_{\#} = \Sigma_{\#}^{(0)} \cup \Sigma_{\#}^{(1)}$ where $\Sigma_{\#}^{(0)} = \{\#\}$ and $\Sigma_{\#}^{(1)} = \Sigma$. Moreover, we define the $\Sigma_{\#}$ -algebra (Σ^*, θ) where $\theta(\#) = \varepsilon$ and $\theta(a)(w) = wa$ for every $a \in \Sigma$ and $w \in \Sigma^*$.

- (a) Show that Σ^* is initial in the class of $\Sigma_{\#}$ -algebras.
- (b) We consider $\Sigma = \{a, b\}$ and the language $L = \{a^n b^m \mid n, m \in N\}$. Sketch the diagram of a total deterministic finite-state automaton accepting L and model the transition table using a finite $\Sigma_{\#}$ -algebra Q. How can we interpret the uniquely determined homomorphism $h: \Sigma^* \to Q$?
- (c) Convince yourself that any total deterministic finite-state automaton can be modeled as a quadruple $\mathcal{A} = (Q, \Sigma, \theta, F)$ where (Q, θ) is a finite $\Sigma_{\#}$ -algebra and $F \subseteq Q$. Define the language accepted by \mathcal{A} using the homomorphism $h: \Sigma^* \to Q$.

Task 8 (universal algebra)

- (a) Show that the mapping sub (restricted to T_{Σ}) is a homomorphism. Start by giving the target algebra.
- (b) Show that the principle of proof by structural induction is correct by applying the above concepts from universal algebra.