Task 3 (proof by structural induction)

Let Σ be a ranked alphabet and H be a set. Prove or refute the following statements for every $\xi, \zeta \in T_{\Sigma}(H)$, and $w \in pos(\xi)$:

- (a) $\xi(w) = \xi|_w(\varepsilon)$,
- (b) $(\xi[\zeta]_w)|_w = \zeta.$

Task 4 (proof of the size-height-lemma)

Prove the following lemma.

Lemma. Let Σ be a ranked alphabet. Then there is an integer $c \geq 1$ such that, for every $\xi \in T_{\Sigma}$, size $(\xi) \leq c^{\operatorname{height}(\xi)}$.

Task 5 (universal algebra)

- (a) Recall the following concepts: Σ -algebra, Σ -homomorphism, initial Σ -algebra in a class \mathcal{K} , and Σ -term algebra.
- (b) Show that the mappings height, size, and sub (restricted to T_{Σ}) are homomorphisms. Start by giving the target algebra for each of them. What is the problem concerning sub?
- (c) Show that the principle of proof by structural induction is correct, applying the above concepts from universal algebra.