1st tutorial (April 18, 2018)

Formale Baumsprachen

Task 1 (definition by structural induction)

Let Σ be a ranked alphabet, $\xi, \xi_1, ..., \xi_k \in T_{\Sigma}$, and $\zeta \in T_{\Sigma}(X_k)$. Define the following functions by structural induction:

- (a) yield(ξ), the sequence of leaves in ξ from left to right; and
- (b) $\zeta[\xi_1, ..., \xi_k]$, the tree obtained from ζ by replacing every occurrence of x_i by ξ_i for every $i \in \{1, ..., k\}$.

In the lecture we defined trees as well-formed expressions. An alternative definition characterises a tree as a tuple (t, φ) where, intuitively, t is a set of *Gorn addresses* that is closed under certain operations and φ assigns a symbol from some alphabet Δ to every element of t.

(c) Give a formal definition of trees over Δ in the above sense.

Formally define the following characteristics of trees in the sense of Task 1(c):

(d) height,(e) size,(f) set of positions,(g) subtree at a position,(i) label at a position.

Task 2 (proof by structural induction)

Let Σ be a ranked alphabet and H be a set. Prove or refute the following statements for every $\xi \in T_{\Sigma}(H)$:

- (a) height(ξ) = 1 + max { $|w| | w \in pos(\xi)$ }, and
- (b) $|\operatorname{pos}(\xi)| = |\operatorname{sub}(\xi)|.$