
Formale Übersetzungsmodelle

Task 18 (decomposition of TOP)

Let \(\Sigma = \{ \gamma^{(1)}, \alpha^{(0)} \} \) and \(\Delta = \{ \sigma^{(2)}, O^{(1)}, E^{(1)}, \alpha^{(0)} \} \) be ranked alphabets and \(\xi = \gamma(\gamma(\alpha)) \in T_{\Sigma} \).

(a) Give a td-tt \(T \) such that \(\tau(T) \) transforms every tree in \(T_{\Sigma} \) into a tree in \(T_{\Delta} \) such that each \(\gamma \) is replaced by \(\sigma \) where the subtree of \(\gamma \) is copied and, starting with \(O \) at the top, alternately \(O \) and \(E \) are inserted before each symbol.

Give a derivation of \(T \) for \(\xi \).

(b) Give a top-down tree homomorphism \(H \) and a linear top-down tree transducer \(T' \) such that \(\tau(T) = \tau(H) \circ \tau(T') \).

Give derivations of \(H \) and \(T' \) for \(\xi \).

Task 19 (generalized sequential machines and top-down tree transducers)

GSM is the class of string transformations \(\tau \subseteq \Sigma^{*} \times \Delta^{*} \) that are be induced by some gsm.

(a) Give formal definitions for the syntax and derivation relation of a gsm, and the string transformation induced by a gsm.

(b) Prove by construction that GSM is closed under composition.

Hint: Use a product construction where the right hand side of a rule of the first gsm is processed by the second gsm (pipelining).

Let \(G = (Q, \Sigma, \Delta, q_0, F, R) \) be a gsm.

(c) Give a gsm \(G^R \) such that \(\tau(G^R) = \{(w^R_l, w^R_r) \mid (w_l, w_r) \in \tau(G)\} \) where \(w^R \) denotes the reverse of \(w \).

(d) Give a td-tt that simulates the run of \(G \) on the nodes of monadic trees from root to front.