Formale Übersetzungsmodelle

Task 17 (symbolic derivation and Tiburon)

Let $k \in \mathbb{N}$ and $\Sigma=\left\{+^{(2)},,^{(2)},-^{(1)}, \sin ^{(1)}, \cos ^{(1)}, X^{(0)}\right\} \cup\left\{0^{(0)}, \ldots, k^{(0)}\right\}$ a ranked alphabet. The trees over Σ represent a subset of polynomials with natural number coefficients.
(a) Give a td-tt T that computes the symbolic derivation of a given tree.
(b) Give a derivation for $\xi=\cdot(+(\sin (\cdot(X, X)), 5), X)$ in T.
(c) Why is there no bu-tt B^{\prime} such that $\tau(T)=\tau\left(B^{\prime}\right)$?
(d) Give a bu-tt B that simplifies a given tree according to the units with respect to \cdot and + and the absorbing nature of 0 with respect to \cdot, in particular, B should collapse $\cdot(\xi, 1)$, $\cdot(1, \xi),+(\xi, 0)$, or $+(0, \xi)$ to ξ and $\cdot(\xi, 0)$ or $\cdot(0, \xi)$ to 0 for every $\xi \in T_{\Sigma}$.
(e) Why is there no $\operatorname{td}-\mathrm{tt} T^{\prime}$ such that $\tau(B)=\tau\left(T^{\prime}\right)$?
(f) Tiburon is a tree transducer package written by Jonathan May at USC/ISI. You can download Tiburon on github (https://github.com/isi-nlp/tiburon) and find a tutorial on the project page (http://www.isi.edu/licensed-sw/tiburon/).
Use the tree transducers from the previous tasks to familiarize yourself with Tiburon.

