Formale Übersetzungsmodelle

Task 15 (BOT; HOM \subseteq BOT)

Let $B=(Q,\Sigma,\Delta,F,R)$ be a bu-tt and $H=(\{*\},\Delta,\Omega,\{*\},R_H)$ a tree homomorphism. Also let $X_{\max}=\{x_i\mid i\in [\max{\mathrm{rank}}(\varSigma)]\}$. Define the bottom-up tree homomorphism $H'=(\{*\},\Delta,\Omega\cup X_{\max},\{*\},R_H)$ and the bottom-up tree transducer $\hat{B}=(Q,\Sigma,\Omega,F,\hat{R})$ where

$$\begin{split} \sigma(q_1(x_1),...,q_k(x_k)) &\to q(u') \in R \land u'[*(x_1),...,*(x_k)] \Rightarrow_{H'}^* *(t') \\ &\iff \sigma(q_1(x_1),...,q_k(x_k)) \to q(t') \in \hat{R} \;. \end{split}$$

Show that for every $s \in T_{\Sigma}$, $q \in Q$, and $t \in T_{\Delta}$ the following equivalence holds:

$$s \Rightarrow_{\hat{B}}^* q(t) \iff \exists u \in T_{\Delta} \colon s \Rightarrow_B^* q(u) \land u \Rightarrow_H^* *(t) \; .$$

Task 16 (regular tree grammars)

Consider the ranked alphabet $\Sigma = \{\alpha^{(0)}, \sigma^{(2)}\}$, the tree $\xi = \sigma(\sigma(\alpha, \alpha), \sigma(\alpha, \alpha)) \in T_{\Sigma}$, and the regular tree grammar $G = (\{S, A\}, \Sigma, S, R)$ where

$$R: S \to A \qquad S \to \sigma(S,S) \qquad A \to \sigma(\alpha,S) \qquad A \to \alpha.$$

- (a) Give a derivation and the corresponding derivation tree of ξ in G. How many derivation trees of ξ do exist in G?
- (b) Give an RTG H and a tree ζ such that ζ has infinitely many derivations in H.
- (c) Give an RTG G' such that G' is in normal form and L(G') = L(G). Give a derivation tree of ξ in G'.
- (d) Prove by construction that for every RTG G there exists an RTG G' in normal form such that L(G') = L(G).