Formale Baumsprachen

Task 23 (monadic second-order logic on trees)

(a) Define macros for conjunction, implication, first and second order universal quantification, an edge relation, a leaf predicate, and a root predicate.

Let $\Sigma = {\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}, \beta^{(0)}}$ be a ranked alphabet. Consider the MSO-formula

$$\varphi = \exists U. \neg \exists x. \exists y. \mathsf{edge}_2(x,y) \land \mathsf{label}_\sigma(y) \land x \in U$$

over Σ where $x, y \in \mathcal{V}_1$ and $U \in \mathcal{V}_2$.

- (b) Calculate $Free(\varphi)$ and $Bound(\varphi)$ using the definitions from the lecture.
- (c) Is φ closed?

Consider the tree $\xi = \sigma(\gamma(\alpha), \beta)$ and the following functions:

$$\begin{split} & \rho_1 \colon \ x \mapsto \varepsilon, \ \ x' \mapsto 1, \ \ y \mapsto 11, \ \ y' \mapsto 2, \\ & \rho_2 \colon \ x \mapsto \varepsilon, \ \ x' \mapsto \varepsilon, \ \ \bar{x} \mapsto 1, \ \ y \mapsto 11, \ \ y' \mapsto 2, \\ & \rho_3 \colon \ \ X \mapsto \{\varepsilon, 1\}, \ \ Y \mapsto \{11, 2\}, \ \text{and} \\ & \rho_4 \colon \ \ X \mapsto \emptyset, \ \ Y \mapsto \{1, 2, 3\}, \ \ x \mapsto \varepsilon. \end{split}$$

- (d) Which of the functions $\rho_1, ..., \rho_4$ are assignments for ξ ? Give the appropriate sets of variables.
- (e) Encode the assignments from Task 23 (d) as trees.
- (f) Which of the trees obtained in Task 23 (e) are valid?

Let $\mathcal{V} = \{x, y, U\}$. Construct MSO-formulas φ_1 , φ_2 , and φ_3 such that $\mathsf{Free}(\varphi_1) \cup \mathsf{Free}(\varphi_2) \cup \mathsf{Free}(\varphi_3) \subseteq \mathcal{V}$ and for every $\xi \in T_{\Sigma}$ and \mathcal{V} -assignment ρ for ξ :

- (g) $(\xi, \rho) \models \varphi_1$ iff there is a downward path from the node $\rho(x)$ to the node $\rho(y)$ in ξ , i.e. there is a $w \in \mathbb{N}^*$ such that $\rho(y) = \rho(x)w$.
- (h) $(\xi, \rho) \models \varphi_2$ iff $\rho(U)$ is the set of all positions w in ξ such that $\xi|_w = \sigma(\alpha, \beta)$.
- (i) $(\xi, \rho) \models \varphi_3$ iff for every node in ξ labeled by σ , none of its child nodes is labeled by γ .