Task 4 (bu-det fta)

Let $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}\}$ and $\Delta = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}$ be ranked alphabets. Give deterministic but A_1, A_2 , and A_3 that recognize L_1, L_2 , and L_3 , respectively, where

- (a) $L_1 = \{\xi \in T_{\Sigma} \mid \xi \text{ contains at least one } \alpha \text{ and one } \beta\},\$
- (b) $L_2 = \{\xi \in T_{\Sigma} \mid \xi \text{ contains an even number of } \alpha \text{ symbols}\}, \text{ and }$
- $\text{(c)} \ \ L_3 = \big\{ \sigma(t_1, \sigma(t_2, ... \sigma(t_n, \alpha) ...)) \in T_\Delta \mid n \in \mathbb{N}, t_1, ..., t_n \in T_{\{\gamma^{(1)}, \alpha^{(0)}\}} \big\}.$

Task 5 (string automata I)

Recall the concept of string automata. Let Σ be an alphabet and $\# \notin \Sigma$. We define the ranked alphabet $\Sigma_{\#} = \Sigma_{\#}^{(0)} \cup \Sigma_{\#}^{(1)}$ where $\Sigma_{\#}^{(0)} = \{\#\}$ and $\Sigma_{\#}^{(1)} = \Sigma$. Moreover, we define the $\Sigma_{\#}$ -algebra (Σ^*, θ) where $\theta(\#) = \varepsilon$ and $\theta(a)(w) = wa$ for every $a \in \Sigma$ and $w \in \Sigma^*$.

- (a) Show that Σ^* is initial in the class of $\Sigma_{\#}$ -algebras.
- (b) We consider $\Sigma = \{a, b\}$ and the language $L = \{a^n b^m \mid n, m \in N\}$. Sketch the diagram of a total deterministic finite-state automaton accepting L and model the transition table using a finite $\Sigma_{\#}$ -algebra Q. How can we interpret the uniquely determined homomorphism $h: \Sigma^* \to Q$?
- (c) Convince yourself that any total deterministic finite-state automaton can be modeled as a quadruple $\mathcal{A} = (Q, \Sigma, \theta, F)$ where (Q, θ) is a finite $\Sigma_{\#}$ -algebra and $F \subseteq Q$. Define the language accepted by \mathcal{A} using the homomorphism $h: \Sigma^* \to Q$.

Task 6 (string automata II)

Let $\Sigma = \{a, b\}$ be an alphabet.

(a) Give a finite state automaton $\mathcal{A}=(Q,\varSigma,q_0,F)$ that recognizes

$$L = \{ w \in \varSigma^* \mid |w|_{\mathbf{a}} - |w|_{\mathbf{b}} \bmod 2 \equiv 0 \}.$$

- (b) Describe L using a homomorphism between the free monoid $(\Sigma^*, \circ, \varepsilon)$ and the monoid $(\{0, 1\}^{Q \times Q}, \times, 1_{Q \times Q}).$
- (c) Describe L using a monoid with carrier $(\Sigma^*)^{Q \times Q}$.

Note The tutorial's time might not suffice for presenting all solutions. Please prepare to ask for the solutions you are most interested in.