Task 3 (universal algebra)

- (a) Recall the following concepts: Σ -algebra, Σ -homomorphism, initial Σ -algebra in a class \mathcal{K} , and Σ -term algebra.
- (b) Show that the mappings height, size, and sub (restricted to T_{Σ}) are homomorphisms. Start by giving the target algebra for each of them. What is the problem concerning sub?
- (c) Show that the principle of proof by structural induction is correct by applying the above concepts from universal algebra.

Task 4 (bu-det fta)

Let $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}\}$ and $\Delta = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}$ be ranked alphabets. Give deterministic but A_1, A_2 , and A_3 that recognize L_1, L_2 , and L_3 , respectively, where

- (a) $L_1 = \{\xi \in T_{\Sigma} \mid \xi \text{ contains at least one } \alpha \text{ and one } \beta\},\$
- (b) $L_2 = \{\xi \in T_{\Sigma} \mid \xi \text{ contains an even number of } \alpha \text{ symbols}\}, \text{ and }$
- $\text{(c)} \ \ L_3 = \big\{ \sigma(t_1, \sigma(t_2, ... \sigma(t_n, \alpha) ...)) \in T_\Delta \ | \ n \in \mathbb{N}, t_1, ..., t_n \in T_{\{\gamma^{(1)}, \alpha^{(0)}\}} \big\}.$

Note The tutorial's time might not suffice for presenting all solutions. Please prepare to ask for the solutions you are most interested in.