1st tutorial (April 11, 2017)

Formale Baumsprachen

Task 1 (definition by structural induction)

Let Σ be a ranked alphabet, $\xi, \xi_1, ..., \xi_k \in T_{\Sigma}$, and $\zeta \in T_{\Sigma}(X_k)$. Define the following functions by structural induction:

- (a) $yield(\xi)$, the sequence of leaves in ξ from left to right; and
- (b) $\zeta[\xi_1, ..., \xi_k]$, the tree obtained from ζ by replacing every occurrence of x_i by ξ_i for every $i \in \{1, ..., k\}$.

In the lecture we defined trees as well-formed expressions. An alternative definition characterises a tree as a tuple (t, φ) where, intuitively, t is a set of *Gorn addresses* that is closed under certain operations and φ assigns a symbol from some alphabet Δ to every element of t.

(c) Give a formal definition of trees over \varDelta in the above sense.

Formally define the following characteristics of trees in the sense of Task 1 (c):

(d) height	(f) set of positions	(h) label at a position
(e) size	(g) set of subtrees	(i) subtree at a position

Task 2 (proof by structural induction)

Let A be a set, Σ be a ranked alphabet, $\xi, \zeta \in T_{\Sigma}(A)$, and $w \in \text{pos}(\xi)$. Prove or refute the following statements:

- (a) $\xi(w) = \xi|_{w}(\varepsilon)$. (c) $|pos(\xi)| = |sub(\xi)|$.
- (b) $(\xi[\zeta]_w)|_w = \zeta$. (d) $\operatorname{height}(\xi) = 1 + \max\{|\rho| \mid \rho \in \operatorname{pos}(\xi)\}.$

Note The tutorial's time might not suffice for presenting all solutions. Please prepare to ask for the solutions you are most interested in.