Formale Übersetzungsmodelle

Task 16 (ln-BOT = ln-TOP)

Let $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}\}$, $\Delta = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}$ be ranked alphabets, and $\xi = \sigma(\sigma(\alpha, \alpha), \alpha) \in T_{\Sigma}$. Consider the linear non-deleting bu-tt $B = (\{q_0, q_1\}, \Sigma, \Delta, \{q_0\}, R_B)$ and the linear non-deleting td-tt $T = (\{q_0, q_1\}, \Sigma, \Delta, \{q_0\}, R_T)$ where

$$\begin{split} R_B &= \left\{ \begin{array}{ll} \alpha \to q_0(\alpha), & \sigma(q_0(x_1), q_0(x_2)) \to q_1(\sigma(x_1, x_2)), \\ & \alpha \to q_1(\alpha), & \sigma(q_1(x_1), q_1(x_2)) \to q_0(\gamma(\sigma(x_2, x_1))) \end{array} \right\} \quad \text{and} \\ R_T &= \left\{ \begin{array}{ll} q_0(\alpha) \to \alpha, & q_0(\sigma(x_1, x_2)) \to \sigma(q_1(x_2), q_1(x_1)), \\ & q_1(\alpha) \to \alpha, & q_1(\sigma(x_1, x_2)) \to \sigma(\gamma(q_0(x_1)), \gamma(q_0(x_2))) \end{array} \right\} \end{split}$$

- (a) Give a linear non-deleting td-tt T' such that $\tau(B) = \tau(T')$. Give derivations of B and T' on ξ .
- (b) Give a linear non-deleting bu-tt B' such that $\tau(T) = \tau(B')$. Give derivations of T and B' on ξ .

Task 17 (generalized sequential machines and top-down tree transducers)

GSM is the class of string transformations $\tau \subseteq \Sigma^* \times \Delta^*$ that are be induced by some gsm.

- (a) Give formal definitions for the syntax and derivation relation of a gsm, and the string transformation induced by a gsm.
- (b) Prove by construction that GSM is closed under composition. **Hint:** Use a product construction where the right hand side of a rule of the first gsm is processed by the second gsm (pipelining).

Let $G = (Q, \Sigma, \Delta, q_0, F, R)$ be a gsm.

- (c) Give a gsm G^R such that $\tau(G^R) = \{(w_l^R, w_r^R) \mid (w_l, w_r) \in \tau(G)\}$ where w^R denotes the reverse of w
- (d) Give a td-tt that simulates the run of G on the nodes of monadic trees from root to front.