Formale Übersetzungsmodelle

Task 9 (powerset construction)

Let $\Sigma = \{\alpha^{(0)}, \sigma^{(2)}\}$ be a ranked alphabet. Consider the bottom-up finite state tree automaton $N = (\{q_0, q_1\}, \Sigma, \Sigma, \{q_0\}, R)$ where R is given by

$$\alpha \to q_0(\alpha) \qquad \qquad \text{and} \qquad \qquad \sigma(q_i(x_1),q_i(x_2)) \to q_{1-k}(\sigma(x_1,x_2))$$

for every $i, j \in \{0, 1\}$ and $k \in \{i, j\}$.

- (a) Determine the tree language of N.
- (b) Use the powerset construction to give a deterministic bottom-up finite state tree automaton N_{det} such that $\tau(N) = \tau(N_{\text{det}})$.

Task 10 (bounded growth property)

Prove the following statement [cf. Eng75, Lem. 1.1, p. 205]:

Claim. There exists a $c \in \mathbb{N}$ such that for every $(s,t) \in \tau(M)$ holds $\operatorname{height}(t) \leq c \cdot \operatorname{height}(s)$.

LEMMA 1.1. Let B = ⟨Σ, Δ, Q, Q_d, R⟩ be a bottom-up fst.
(1) For σ ∈ Σ₀, q ∈ Q and s ∈ T_Δ, if σ ⇒ q(s), then the rule σ → q(s) is in R.
(2) For k ≥ 1, σ ∈ Σ_k, t₁, · · · , t_k ∈ T_Σ, q ∈ Q and s ∈ T_Δ, if σ(t₁ · · · t_k) ⇒ q(s), then there exist states q₁, · · · , q_k and trees s₁, · · · , s_k in T_Δ such that σ(t₁ · · · t_k) ⇒ σ(q₁(s₁) · · · q_k(s_k)) ⇒ q(s) and for all i (1 ≤ i ≤ k) t_i ⇒ q_i(s_i).
(3) For k ≥ 1, t₁, · · · , t_k ∈ T_Σ, q₁, · · · , q_k ∈ Q, s₁, · · · , s_k ∈ T_Δ and σ ∈ Σ_k, if for all i (1 ≤ i ≤ k) t_i ⇒ q_i(s_i), then σ(t₁ · · · t_k) ⇒ σ(q₁(s₁) · · · q_k(s_k)).

Task 11 (BOT \subseteq REL; FTA; HOM)

Let $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}$. Consider the bu-tt $M = (\{q_0, q_1, p\}, \Sigma, \Sigma, \{q_0\}, R)$, where R is given by:

$$\begin{split} \alpha &\to q_0(\alpha), \qquad & \gamma(p(x_1)) \to p(\gamma(x_1)), \qquad & \sigma(q_0(x_1), p(x_2)) \to q_1(\sigma(x_2, x_1)), \\ \alpha &\to p(\alpha), \qquad & \sigma(q_1(x_1), p(x_2)) \to q_0(\sigma(x_1, x_1)). \end{split}$$

- (a) Describe $\tau(M)$.
- (b) Construct, according to the decomposition result from the lecture, a relabeling bu-tt M_1 , an fta M_2 , and a homomorphism bu-tt M_3 such that $\tau(M) = \tau(M_1); \tau(M_2); \tau(M_3)$.
- (c) Illustrate the transformation $\tau(M_1)$; $\tau(M_2)$; $\tau(M_3)$ with the input tree $\sigma(\alpha, \gamma \alpha) \in T_{\Sigma}$.

Task 12 (BOT \subseteq QREL; HOM)

- (a) Elaborate on the construction of the qrel bu-tt in the proof of $BOT \subseteq QREL$; HOM.
- (b) Apply the above construction to the bu-tt $M = (\{q_0, q_1, p\}, \Sigma, \Sigma, \{q_0\}, R)$, where $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}$ and R is given by:

$$\begin{split} &\alpha \to q_0(\alpha), \qquad \gamma(p(x_1)) \to p(\gamma(x_1)), \qquad \sigma(q_0(x_1), p(x_2)) \to q_1(\sigma(x_2, x_1)), \\ &\alpha \to p(\alpha), \qquad \qquad \sigma(q_1(x_1), p(x_2)) \to q_0(\sigma(x_1, x_1)). \end{split}$$

I.e. give a qrel bu-tt M'_1 and a homomorphism bu-tt M'_2 such that $\tau(M) = \tau(M'_1)$; $\tau(M'_2)$.

References

[Eng75] J. Engelfriet. "Bottom-up and top-down tree transformations—a comparison". In: Mathematical systems theory 9.2 (1975), pp. 198–231. issn: 0025-5661. doi: 10.1007/ BF01704020.