4. Übung (10. November 2016)

Formale Übersetzungsmodelle

Task 9 (powerset construction)

Let $\Sigma=\left\{\alpha^{(0)}, \sigma^{(2)}\right\}$ be a ranked alphabet. Consider the bottom-up finite state tree automaton $N=\left(\left\{q_{0}, q_{1}\right\}, \Sigma, \Sigma,\left\{q_{0}\right\}, R\right)$ where R is given by

$$
\alpha \rightarrow q_{0}(\alpha) \quad \text { and } \quad \sigma\left(q_{i}\left(x_{1}\right), q_{j}\left(x_{2}\right)\right) \rightarrow q_{1-k}\left(\sigma\left(x_{1}, x_{2}\right)\right)
$$

for every $i, j \in\{0,1\}$ and $k \in\{i, j\}$.
(a) Determine the tree language of N.
(b) Use the powerset construction to give a deterministic bottom-up finite state tree automaton $N_{\text {det }}$ such that $\tau(N)=\tau\left(N_{\text {det }}\right)$.

Task 10 (bounded growth property)

Prove the following statement [cf. Eng75, Lem. 1.1, p. 205]:
Claim. There exists a $c \in \mathbb{N}$ such that for every $(s, t) \in \tau(M)$ holds height $(t) \leq c \cdot \operatorname{height}(s)$.

LEMMA 1.1. Let $B=\left\langle\Sigma, \Delta, Q, Q_{d}, R\right\rangle$ be a bottom-up fst.
(1) For $\sigma \in \Sigma_{0}, q \in Q$ and $s \in T_{\Delta}$, if $\sigma \stackrel{*}{\Rightarrow} q(s)$, then the rule $\sigma \rightarrow q(s)$ is in R.
(2) For $k \geq 1, \sigma \in \Sigma_{k}, t_{1}, \cdots, t_{k} \in T_{\Sigma}, q \in Q$ and $s \in T_{\Delta}$, if $\sigma\left(t_{1} \cdots t_{k}\right) \stackrel{*}{\Rightarrow} q(s)$, then there exist states q_{1}, \cdots, q_{k} and trees s_{1}, \cdots, s_{k} in T_{Δ} such that $\sigma\left(t_{1} \cdots t_{k}\right) \stackrel{*}{\Rightarrow} \sigma\left(q_{1}\left(s_{1}\right) \cdots q_{k}\left(s_{k}\right)\right) \Rightarrow q(s)$ and for all $i(1 \leq i \leq k) \quad t_{i} \stackrel{*}{\Rightarrow}$ $q_{i}\left(s_{i}\right)$.
(3) For $k \geq 1, t_{1}, \cdots, t_{k} \in T_{\Sigma}, q_{1}, \cdots, q_{k} \in Q, s_{1}, \cdots, s_{k} \in T_{\Delta}$ and $\sigma \in \Sigma_{k}$, if for all $i(1 \leq i \leq k) t_{i} \stackrel{*}{\Rightarrow} q_{i}\left(s_{i}\right)$, then $\sigma\left(t_{1} \cdots t_{k}\right) \stackrel{*}{\Rightarrow} \sigma\left(q_{1}\left(s_{1}\right) \cdots q_{k}\left(s_{k}\right)\right)$.

Task 11 (BOT \subseteq REL ; FTA ; HOM)
Let $\Sigma=\left\{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\right\}$. Consider the bu-tt $M=\left(\left\{q_{0}, q_{1}, p\right\}, \Sigma, \Sigma,\left\{q_{0}\right\}, R\right)$, where R is given by:

$$
\begin{array}{ll}
\alpha \rightarrow q_{0}(\alpha), & \gamma\left(p\left(x_{1}\right)\right) \rightarrow p\left(\gamma\left(x_{1}\right)\right), \\
\alpha \rightarrow p(\alpha), & \sigma\left(q_{0}\left(x_{1}\right), p\left(x_{2}\right)\right) \rightarrow q_{1}\left(\sigma\left(x_{2}, x_{1}\right)\right), \\
& \sigma\left(q_{1}\left(x_{1}\right), p\left(x_{2}\right)\right) \rightarrow q_{0}\left(\sigma\left(x_{1}, x_{1}\right)\right) .
\end{array}
$$

(a) Describe $\tau(M)$.
(b) Construct, according to the decomposition result from the lecture, a relabeling bu-tt M_{1}, an fta M_{2}, and a homomorphism bu-tt M_{3} such that $\tau(M)=\tau\left(M_{1}\right) ; \tau\left(M_{2}\right) ; \tau\left(M_{3}\right)$.
(c) Illustrate the transformation $\tau\left(M_{1}\right) ; \tau\left(M_{2}\right) ; \tau\left(M_{3}\right)$ with the input tree $\sigma(\alpha, \gamma \alpha) \in T_{\Sigma}$.

Task 12 (BOT \subseteq QREL; HOM)

(a) Elaborate on the construction of the qrel bu-tt in the proof of BOT \subseteq QREL ; HOM.
(b) Apply the above construction to the bu-tt $M=\left(\left\{q_{0}, q_{1}, p\right\}, \Sigma, \Sigma,\left\{q_{0}\right\}, R\right)$, where $\Sigma=$ $\left\{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\right\}$ and R is given by:

$$
\begin{array}{ll}
\alpha \rightarrow q_{0}(\alpha), & \gamma\left(p\left(x_{1}\right)\right) \rightarrow p\left(\gamma\left(x_{1}\right)\right), \\
\alpha \rightarrow p(\alpha), & \\
& \sigma\left(q_{0}\left(x_{1}\right), p\left(x_{2}\right)\right) \rightarrow q_{1}\left(\sigma\left(x_{2}, x_{1}\right)\right), \\
& \sigma\left(q_{1}\left(x_{1}\right), p\left(x_{2}\right)\right) \rightarrow q_{0}\left(\sigma\left(x_{1}, x_{1}\right)\right) .
\end{array}
$$

I.e. give a qrel bu-tt M_{1}^{\prime} and a homomorphism bu-tt M_{2}^{\prime} such that $\tau(M)=\tau\left(M_{1}^{\prime}\right) ; \tau\left(M_{2}^{\prime}\right)$.

References

[Eng75] J. Engelfriet. "Bottom-up and top-down tree transformations-a comparison". In: Mathematical systems theory 9.2 (1975), pp. 198-231. issn: 0025-5661. doi: 10.1007/ BF01704020.

