
Formale Übersetzungsmodelle

Task 1 (ranked alphabets and trees)

Consider the following trees:

- (a) Give $\text{height}(\xi_i)$, $\text{size}(\xi_i)$, $\text{pos}(\xi_i)$, $\text{sub}(\xi_i)$ for $i \in \{1, 2\}$.
- (b) Extend the intersection, union, and subset relation to ranked alphabets.
- (c) Define minimal ranked alphabets Δ_1 and Δ_2 such that $\xi_1 \in \mathsf{T}_{\Delta_1}$ and $\xi_2 \in \mathsf{T}_{\Delta_2}$.
- (d) Prove or refute: There is a ranked alphabet Γ such that $\xi_1, \xi_2 \in T_{\Gamma}$.

Task 2 (definition by structural induction)

Let Σ be a ranked alphabet, A a set, $\xi \in T_{\Sigma}(A)$, $w \in \text{pos}(\xi)$, $\zeta \in T_{\Sigma}(X_k)$, and $\zeta'_1, ..., \zeta'_k \in T_{\Sigma}(A)$. Define the following characteristics of ξ and ζ by structural induction:

- (a) $\text{height}(\xi)$, number of nodes on the longest path in ξ ,
- (b) $size(\xi)$, number of nodes in ξ ,
- (c) $pos(\xi)$, set of positions in ξ ,
- (d) $sub(\xi)$, set of subtrees of ξ ,
- (e) $\xi(w)$, the label of ξ at position w,
- (f) $\xi|_w$, the subtree of ξ at position w,
- (g) $\xi[\zeta]_w$, the tree obtained by substituting the subtree of ξ at position w with ζ ,
- (h) $yield(\xi)$, the sequence of leaves of ξ from left to right, and
- (i) $\zeta[\zeta'_1,...,\zeta'_k]$, the tree obtained from ζ by substituting x_i by ζ'_i for every $i \in \{1,...,k\}$.

Note The tutorial's time might not suffice to present all solutions. Please prepare to ask for the solutions you are most interested in.