Task 15 (Rec = MSO-definable)

- (a) Let $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}$ be a ranked alphabet. Consider the bottom-up deterministic fta $\mathcal{A} = (Q, \Sigma, \delta, F)$ with $Q = \{0, 1\}, F = \{1\}$, and $\delta_{\sigma}(q_1, q_2) = \max\{q_1, q_2\}$ for every $q_1, q_2 \in Q, \delta_{\gamma}(q) = 1$ for every $q \in Q$, and $\delta_{\alpha}() = 0$. Use the construction from the lecture to show that $L(\mathcal{A})$ is MSO-definable.
- (b) Recall the following Lemma from the lecture:

Lemma. Let Σ be a ranked alphabet and $\mathcal{V} \subseteq_{\text{fin}} \mathcal{V}_1$. Then $T^{\mathsf{v}}_{\Sigma_{\mathcal{V}}}$ is recognizable. In the proof we required a family of languages $(L_x \mid x \in \mathcal{V})$ where for every $x \in \mathcal{V}$:

 $L_x = \{\xi \in T_{\Sigma_{\mathcal{V}}} \mid x \text{ occurs exactly once in } \xi\}.$

Construct an automaton \mathcal{A}_x for every $x \in \mathcal{V}$ such that $L(\mathcal{A}_x) = L_x$.

(c) Let $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}$ and $\varphi = \exists x. label_{\gamma}(x)$. Use the construction from the lecture to show that $L(\varphi)$ is recognizable.

Task 16 (pumping lemma for Rec)

Prove the following lemma.

Lemma. Let Σ be a ranked alphabet and $L \in \text{Rec}(\Sigma)$. Then there is a $p \in \mathbb{N}$ such that for every $\xi \in L$, the following implication holds:

If $\text{height}(\xi) \ge p$, then there are $u, v \in C_{\Sigma,1}$ and $w \in T_{\Sigma}$ such that

- (i) $\xi = u[v[w]],$ (iii) height(v) ≥ 2 , and
- (ii) $\operatorname{height}(v[w]) \le p$, (iv) for every $n \in \mathbb{N}, u[v^n[w]] \in L$.