Task 13 (Myhill-Nerode theorem for trees)

Let $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}\}$ be a ranked alphabet and $L \subseteq T_{\Sigma}$ be the language consisting of all trees with exactly as many α s as β s. Use the Myhill-Nerode theorem to show that L is not recognizable.

Task 14 (monadic second-order logic on trees)

Let $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}, \beta^{(0)}\}$ be a ranked alphabet. Consider the MSO-formula

 $\varphi = \exists U. \neg \exists x. \exists y. \mathsf{edge}_{2}(x, y) \land \mathsf{label}_{\sigma}(y) \land x \in U$

over Σ where $x, y \in \mathcal{V}_1$ and $U \in \mathcal{V}_2$.

- (a) Calculate $Fr(\varphi)$ and $Bd(\varphi)$ using the definitions from the lecture.
- (b) Is φ closed?

Consider the tree $\xi = \sigma(\gamma(\alpha), \beta)$ and the following functions:

$$\begin{array}{ll} \rho_1\colon x\mapsto\varepsilon, \ x'\mapsto 1, \ y\mapsto 11, \ y'\mapsto 2,\\ \rho_2\colon x\mapsto\varepsilon, \ x'\mapsto\varepsilon, \ \bar{x}\mapsto 1, \ y\mapsto 11, \ y'\mapsto 2,\\ \rho_3\colon X\mapsto\{\varepsilon,1\}, \ Y\mapsto\{11,2\}, \text{ and}\\ \rho_4\colon X\mapsto\emptyset, \ Y\mapsto\{1,2,3\}, \ x\mapsto\varepsilon. \end{array}$$

- (c) Which of the functions $\rho_1, ..., \rho_4$ are assignments for ξ ? Give the appropriate sets of variables.
- (d) Encode the assignments from Task 14 (c) as trees.
- (e) Which of the trees obtained in Task 14 (d) are valid?

Let $\mathcal{V} = \{x, y, U\}$. Construct MSO-formulas φ_1, φ_2 , and φ_3 such that $\operatorname{Fr}(\varphi_1), \operatorname{Fr}(\varphi_2), \operatorname{Fr}(\varphi_3) \subseteq \mathcal{V}$ and for every $\xi \in T_{\Sigma}$ and \mathcal{V} -assignment ρ for ξ :

- (f) $(\xi, \rho) \models \varphi_1$ iff there is a downward path from the node $\rho(x)$ to the node $\rho(y)$ in ξ , i.e. there is a $w \in \mathbb{N}^*$ such that $\rho(y) = \rho(x)w$.
- (g) $(\xi, \rho) \models \varphi_2$ iff $\rho(U)$ is the set of all positions w in ξ such that $\xi|_w = \sigma(\alpha, \beta)$.
- (h) $(\xi, \rho) \models \varphi_3$ iff for every node in ξ labeled by σ , none of its child nodes is labeled by γ .