Task 10 (relabelings)

(a) Show that any relabeling preserves the image under **pos**.

Let Σ and Δ be ranked alphabets.

- (b) Under which conditions is there a relabeling between trees over Σ and trees over Δ ?
- (c) Let τ be a relabeling between trees over Σ and trees over Δ . Now consider $\sigma \in \Sigma$, $\xi \in T_{\Sigma}$, and $L \subseteq T_{\Sigma}$. Quantify τ in the following expressions:

(i) $\tau(\sigma)$, (ii) $\tau(\xi)$, and (iii) $\tau(L)$

Task 11 (construction of Bar-Hillel, Perles, and Shamir)

Consider the ranked alphabet $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}, \lambda^{(0)}\}$ and the fta $\mathcal{A} = (Q, \Sigma, \delta, F)$ where $Q = \{e, o\}, F = \{e\}$, and

$$\delta_\alpha = \delta_\beta = \delta_\gamma = \{(\varepsilon, o)\}, \qquad \quad \delta_\sigma = \{(q_1q_2, q_0) \in Q^2 \times Q \mid q_0 = o \text{ iff } q_1 = q_2\}.$$

Moreover, let us assume an fsa $\mathcal{B} = (P, \Delta, p, \mu, G)$ where $\Delta = \Sigma^{(0)} \setminus \{\lambda\}, P = \{p, r\}, G = \{r\},$ and

$$\mu = \{(p,\alpha,p), (p,\beta,r), (r,\beta,r)\}.$$

Using the technique from the lecture, construct an fta \mathcal{A}' such that

$$L(\mathcal{A}') = L(\mathcal{A}) \cap \text{yield}_{\lambda}^{-1}(L(\mathcal{B})).$$

Task 12 (construction for $\text{Rec} \subseteq \text{Rat}$)

Consider the ranked alphabet $\Sigma = \{\alpha^{(0)}, \gamma^{(1)}\}.$

(a) Give sets N and P such that the regular tree grammar $G = (N, \Sigma, Z, P)$ recognizes

 $L = \{\xi \in T_{\Sigma} \mid \text{the number of occurrences of } \gamma \text{ in } \xi \text{ is } not \text{ divisible by } 3\}.$

(b) Convince yourself that $L_{Z,\emptyset}^N = L$ using the following definition and property:

Definition. For every $Q, K \subseteq N$ such that $Q \cap K = \emptyset$, and for every $A \in N$:

$$\begin{split} L^Q_{A,K} = \big\{ \xi \in T_{\Sigma}(K) \mid \text{there is a derivation } A \Rightarrow_G \xi_1 \Rightarrow_G \ldots \Rightarrow_G \xi_n \Rightarrow_G \xi_{n+1} = \xi \text{ with} \\ n \geq 0 \text{ such that for every } i \in [n] \colon \xi_i \in T_{\Sigma}(Q \cup K) \text{ and a rule with} \\ \text{ left-hand side in } Q \text{ is applied to } \xi_i \text{ to obtain } \xi_{i+1} \big\} \end{split}$$

Property. For every
$$Q, K \subseteq N$$
 and $A, B \in N$ such that $B \in N \setminus Q$ and $(Q \cup \{B\}) \cap K = \emptyset$:
 $L_{A,K}^{Q \cup \{B\}} = L_{A,K \cup \{B\}}^{Q} \cdot_B (L_{B,K \cup \{B\}}^Q)_B^* \cdot_B L_{B,K}^Q$