4. Übung (May 11, 2016)

Formale Baumsprachen

Task 10 (relabelings)

(a) Show that any relabeling preserves the image under pos.

Let Σ and Δ be ranked alphabets.
(b) Under which conditions is there a relabeling between trees over Σ and trees over Δ ?
(c) Let τ be a relabeling between trees over Σ and trees over Δ. Now consider $\sigma \in \Sigma, \xi \in T_{\Sigma}$, and $L \subseteq T_{\Sigma}$. Quantify τ in the following expressions:
(i) $\tau(\sigma)$,
(ii) $\tau(\xi)$, and
(iii) $\tau(L)$

Task 11 (construction of Bar-Hillel, Perles, and Shamir)

Consider the ranked alphabet $\Sigma=\left\{\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}, \lambda^{(0)}\right\}$ and the fta $\mathcal{A}=(Q, \Sigma, \delta, F)$ where $Q=\{e, o\}, F=\{e\}$, and

$$
\delta_{\alpha}=\delta_{\beta}=\delta_{\gamma}=\{(\varepsilon, o)\}, \quad \delta_{\sigma}=\left\{\left(q_{1} q_{2}, q_{0}\right) \in Q^{2} \times Q \mid q_{0}=o \text { iff } q_{1}=q_{2}\right\} .
$$

Moreover, let us assume an fsa $\mathcal{B}=(P, \Delta, p, \mu, G)$ where $\Delta=\Sigma^{(0)} \backslash\{\lambda\}, P=\{p, r\}, G=\{r\}$, and

$$
\mu=\{(p, \alpha, p),(p, \beta, r),(r, \beta, r)\} .
$$

Using the technique from the lecture, construct an fta \mathcal{A}^{\prime} such that

$$
L\left(\mathcal{A}^{\prime}\right)=L(\mathcal{A}) \cap \operatorname{yield}_{\lambda}^{-1}(L(\mathcal{B})) .
$$

Task 12 (construction for Rec \subseteq Rat)

Consider the ranked alphabet $\Sigma=\left\{\alpha^{(0)}, \gamma^{(1)}\right\}$.
(a) Give sets N and P such that the regular tree grammar $G=(N, \Sigma, Z, P)$ recognizes

$$
L=\left\{\xi \in T_{\Sigma} \mid \text { the number of occurrences of } \gamma \text { in } \xi \text { is not divisible by } 3\right\} .
$$

(b) Convince yourself that $L_{Z, \emptyset}^{N}=L$ using the following definition and property:

Definition. For every $Q, K \subseteq N$ such that $Q \cap K=\emptyset$, and for every $A \in N$:
$L_{A, K}^{Q}=\left\{\xi \in T_{\Sigma}(K) \mid\right.$ there is a derivation $A \Rightarrow_{G} \xi_{1} \Rightarrow_{G} \ldots \Rightarrow_{G} \xi_{n} \Rightarrow_{G} \xi_{n+1}=\xi$ with $n \geq 0$ such that for every $i \in[n]: \xi_{i} \in T_{\Sigma}(Q \cup K)$ and a rule with left-hand side in Q is applied to ξ_{i} to obtain $\left.\xi_{i+1}\right\}$

Property. For every $Q, K \subseteq N$ and $A, B \in N$ such that $B \in N \backslash Q$ and $(Q \cup\{B\}) \cap K=\emptyset:$

$$
L_{A, K}^{Q \cup\{B\}}=L_{A, K \cup\{B\}}^{Q} \cdot{ }_{B}\left(L_{B, K \cup\{B\}}^{Q}\right)_{B}^{*} \cdot{ }_{B} L_{B, K}^{Q}
$$

