Formale Baumsprachen

Task 7 (closure of Rec under intersection, union, and complement)

Let $\Sigma = {\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}, \beta^{(0)}}$ be a ranked alphabet. Consider the following recognizable tree languages

$$\begin{split} L_1 &= \big\{ \xi \in T_{\Sigma} \mid \text{for every } w \in \text{pos}(\xi) \colon w \in \{2\}^* \text{ if and only if } \xi(w) \in \{\sigma, \alpha\} \big\} \text{ and } \\ L_2 &= \big\{ \xi \in T_{\Sigma} \mid \text{for every } w \in \text{pos}(\xi) \colon \xi(w) = \alpha \text{ only if } |w| \equiv 0 \text{ (mod 2)} \big\}. \end{split}$$

Find finite representations for the following languages:

- (a) L_1
- (b) L_2
- (c) $L_1 \cup L_2$ (d) $L_1 \cap L_2$ (e) $T_{\Sigma} \setminus L_1$

Task 8 (concatenation and Kleene star for recognizable tree languages)

Let Σ be a ranked alphabet.

- (a) Show that $Rec(\Sigma)$ is closed under top concatenation without using the fact that it is closed under tree concatenation.
- (b) Why can we not use the closure of $Rec(\Sigma)$ under tree concatenation to prove the closure under Kleene star?

Prove or refute the following two statements:

- (c) For every $\alpha \in \Sigma^{(0)}$, the binary operation \cdot_{α} is associative.
- (d) $(L_1 \cdot_{\alpha} L_2) \cdot_{\beta} L_3 = L_1 \cdot_{\alpha} (L_2 \cdot_{\beta} L_3)$ for arbitrary $L_1, L_2, L_3 \in \text{Rec}(\Sigma)$ and $\alpha, \beta \in \Sigma^{(0)}$.

Let $\Delta = \{\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}\}$ be a ranked alphabet.

(e) Using the construction from the lecture, show that $\{\sigma(\alpha,\beta)\}_{\beta}^* \cdot_{\beta} \{\alpha\} \in \text{Rec}(\Sigma)$.

Task 9 (finite state automata)

Let $\Sigma = \{a, b\}$ be an alphabet.

(a) Give a finite state automaton $\mathcal{A} = (Q, \Sigma, q_0, F)$ that recognizes

$$L = \{ w \in \Sigma^* \mid |w|_2 - |w|_b \mod 2 \equiv 0 \}.$$

- (b) Describe L using a homomorphism between the free monoid $(\Sigma^*, \circ, \varepsilon)$ and the monoid $(\{0,1\}^{Q\times Q},\times,1_{Q\times Q}).$
- (c) Describe L using a monoid with carrier $(\Sigma^*)^{Q \times Q}$.