

Ergänzungen zum maschinellen Übersetzen natürlicher Sprachen

5. Übungsblatt

2016-06-28

Exercise 1

We consider the CFG *G* with the set of productions *R*:

$$\rho_1: S \to SS , \qquad \qquad \rho_2: S \to a ,$$

which generates the language $\{a^n \mid n \ge 1\}$. In this scenario, we let $X = \Sigma^* \cup \{\bot\}$, $Y = D(G) \cup \{\bot\}$ where D(G) is the set of all (leftmost) derivations of *G*, and $Z = \{\emptyset\}$.

We fix the probability model $p: \Omega \to \mathcal{M}(Y \times X \mid Z)$ by letting $\Omega = [0, 1]$, i.e., the interval of reals from 0 to 1. Intuitively, $\omega \in \Omega$ is the probability of production ρ_1 , and hence $1 - \omega$ is the probability of production ρ_2 . Note that every derivation for a^n consists of n - 1 occurrences of ρ_1 and n occurrences of ρ_2 . Then, as usual, we define the probability distribution $p_{\omega}(\emptyset)$ of $Y \times X$ follows:

$$p_{\omega}(\emptyset)(y,x) = \begin{cases} \omega^{n-1} \cdot (1-\omega)^n & \text{if } y \text{ derives } x, x = a^n, \text{ and } n \ge 1, \\ 1 - \sum_{n \ge 1} C_{n-1} \cdot \omega^{n-1} \cdot (1-\omega)^n & \text{if } y = \bot \text{ and } x = \bot, \\ 0 & \text{otherwise,} \end{cases}$$

where C_n is the number of derivations for a^{n+1} , which is given by

$$C_n = \frac{(2n)!}{n! \cdot (n+1)!} \,. \tag{Catalan number}$$

1. Let us consider the $X \times Z$ -corpus *c* with

$$c(aa, \emptyset) = 4$$
, $c(aaa, \emptyset) = 6$, and $c(x, \emptyset) = 0$ for every other *x*.

Derive the *Y* × *X* × *Z*-corpus $c\langle \omega, p \rangle$. Then compute $(p)_{cb}(\omega)$.

2. We let $A = \{SS, a\}$ and $B = \{S\}$ be the sets of, respectively, all right-hand sides and all lefthand sides in the set *R* of productions. Moreover, we let $C = A \times B$. Define an appropriate counting information $\kappa = (q, \lambda, \pi)$ such that $p_{\omega}(y, x | \emptyset) = (\kappa^{\flat})_{\omega}(y, x | z)$.

Consider the corpus *c* of task 1 and specify the relevant entries of the corpus $c\langle\omega,\kappa\rangle$. Afterwards, give the simple counting step mapping $\|\kappa\|_{sc}(\omega)$.

- 3. We define the io-info $\mu = (q, \pi_1, \pi_2, K, H)$ with *q* as before and
 - $\pi_1: Y_{\not{\perp}} \to X_{\not{\perp}}$ maps every derivation to its derived string in Σ^* , and $\pi_2: Y_{\not{\perp}} \to Z$ maps every derivation to \emptyset ,
 - $K(\emptyset)$ is the unambiguous RTG with one state * and the rules $\langle **, (SS, S), * \rangle$ and $\langle \varepsilon, (a, S), * \rangle$,
 - $H(a^n, \emptyset)$ is the unambiguous RTG with states $\{1, ..., n\}$, *n* being initial, and the rules $\langle jk, (SS, S), j + k \rangle$ and $\langle \varepsilon, (a, S), 1 \rangle$.

Compute:

$$\chi_{\omega,aa,\emptyset}(SS,S) = \qquad \qquad \beta_{\omega,aa,\emptyset} = \\ \chi_{\omega,aa,\emptyset}(a,S) = \qquad \qquad \beta_{\omega,aaa,\emptyset} = \\ \chi_{\omega,aaa,\emptyset}(SS,S) = \qquad \qquad c\langle\omega,\mu\rangle(SS,S) = \\ \chi_{\omega,aaa,\emptyset}(a,S) = \qquad \qquad c\langle\omega,\mu\rangle(a,S) = \end{cases}$$

Show that $(|\mu|)_{io}(\omega) \ni \widetilde{c(\omega, \mu)}$ and compute the following values:

$$\widetilde{c\langle\omega,\mu\rangle}(SS,S) = \widetilde{c\langle\omega,\mu\rangle}(a,S) =$$