Ergänzungen zum maschinellen Übersetzen natürlicher Sprachen

5. Übungsblatt
2016-06-28

Exercise 1

We consider the CFG G with the set of productions R :

$$
\rho_{1}: S \rightarrow S S, \quad \rho_{2}: S \rightarrow a
$$

which generates the language $\left\{a^{n} \mid n \geq 1\right\}$. In this scenario, we let $X=\Sigma^{*} \cup\{\perp\}, Y=D(G) \cup\{\perp\}$ where $D(G)$ is the set of all (leftmost) derivations of G, and $Z=\{\emptyset\}$.

We fix the probability model $p: \Omega \rightarrow \mathcal{M}(Y \times X \mid Z)$ by letting $\Omega=[0,1]$, i.e., the interval of reals from 0 to 1 . Intuitively, $\omega \in \Omega$ is the probability of production ρ_{1}, and hence $1-\omega$ is the probability of production ρ_{2}. Note that every derivation for a^{n} consists of $n-1$ occurrences of ρ_{1} and n occurrences of ρ_{2}. Then, as usual, we define the probability distribution $p_{\omega}(\emptyset)$ of $Y \times X$ follows:

$$
p_{\omega}(\emptyset)(y, x)= \begin{cases}\omega^{n-1} \cdot(1-\omega)^{n} & \text { if } y \text { derives } x, x=a^{n}, \text { and } n \geq 1 \\ 1-\sum_{n \geq 1} C_{n-1} \cdot \omega^{n-1} \cdot(1-\omega)^{n} & \text { if } y=\perp \text { and } x=\perp \\ 0 & \text { otherwise }\end{cases}
$$

where C_{n} is the number of derivations for a^{n+1}, which is given by

$$
\begin{equation*}
C_{n}=\frac{(2 n)!}{n!\cdot(n+1)!} \tag{Catalannumber}
\end{equation*}
$$

1. Let us consider the $X \times Z$-corpus c with

$$
c(a a, \emptyset)=4, c(a a a, \emptyset)=6, \quad \text { and } c(x, \emptyset)=0 \text { for every other } x
$$

Derive the $Y \times X \times Z$-corpus $c\langle\omega, p\rangle$. Then compute $(p)_{\mathrm{cb}}(\omega)$.
2. We let $A=\{S S, a\}$ and $B=\{S\}$ be the sets of, respectively, all right-hand sides and all lefthand sides in the set R of productions. Moreover, we let $C=A \times B$. Define an appropriate counting information $\kappa=(q, \lambda, \pi)$ such that $p_{\omega}(y, x \mid \emptyset)=\left(\kappa^{b}\right)_{\omega}(y, x \mid z)$.
Consider the corpus c of task 1 and specify the relevant entries of the corpus $c\langle\omega, \kappa\rangle$. Afterwards, give the simple counting step mapping $(\kappa)_{\mathrm{sc}}(\omega)$.
3. We define the io-info $\mu=\left(q, \pi_{1}, \pi_{2}, K, H\right)$ with q as before and

- $\pi_{1}: Y_{\not \perp} \rightarrow X_{\not \perp}$ maps every derivation to its derived string in Σ^{*}, and $\pi_{2}: Y_{\not \perp} \rightarrow Z$ maps every derivation to \emptyset,
- $K(\emptyset)$ is the unambiguous RTG with one state $*$ and the rules $\langle * *,(S S, S), *\rangle$ and $\langle\varepsilon,(a, S), *\rangle$,
- $H\left(a^{n}, \emptyset\right)$ is the unambiguous RTG with states $\{1, \ldots, n\}, n$ being initial, and the rules $\langle j k,(S S, S), j+k\rangle$ and $\langle\varepsilon,(a, S), 1\rangle$.

Compute:

$$
\begin{array}{r}
\chi_{\omega, a a, \emptyset}(S S, S)= \\
\chi_{\omega, a a, \emptyset}(a, S)= \\
\chi_{\omega, a a a, \emptyset}(S S, S)= \\
\chi_{\omega, a a a, \emptyset}(a, S)=
\end{array}
$$

$$
\begin{array}{r}
\beta_{\omega, a a, \emptyset}= \\
\beta_{\omega, a a, \emptyset}= \\
c\langle\omega, \mu\rangle(S S, S)= \\
c\langle\omega, \mu\rangle(a, S)=
\end{array}
$$

Show that $(\mu)_{\text {io }}(\omega) \ni \overline{c\langle\omega, \mu\rangle}$ and compute the following values:

$$
\overline{c\langle\omega, \mu\rangle}(S S, S)=\quad \widetilde{c\langle\omega, \mu\rangle}(a, S)=
$$

