

# Ergänzungen zum maschinellen Übersetzen natürlicher Sprachen

1. Übungsblatt

2016-04-12

#### Exercise 1

Let  $a, c \in \mathbb{R}$ . The logarithm of c to base a, denoted by  $\log_a c$ , is the unique  $b \in \mathbb{R}$  such that  $a^b = c$ .

- 1. Recall some logarithmic identities.
- 2. We assume that  $0^0 = 1$  and  $\log 0 = -\infty$ . Show that  $0 \cdot (-\infty) = 0$ .

#### Exercise 2

Let X be an arbitrary set, and  $f: X \to \mathbb{R}$  and  $g: \mathbb{R} \to \mathbb{R}$  be mappings such that g is strictly increasing, i.e.,  $\forall x, y \in \mathbb{R}: x < y \implies g(x) < g(y)$ . Show that

- 1.  $\forall x, y \in \mathbb{R} : g(x) < g(y) \implies x < y$  and
- 2.  $\operatorname{argmax} f = \operatorname{argmax} g \circ f$ .

#### **Exercise 3**

The *k*-means algorithm partitions *n* data points  $x_1, \ldots, x_n \in \mathbb{R}^q$  into *k* clusters. The objective is to minimize  $\sum_{j=1}^n d(x_j, \mu_{z_j})$  where  $z_j$  is the cluster assigned to  $x_j, \mu_i$  is the mean of the *i*-th cluster, and *d* is a distance function. For each cluster *i* in  $\{1, \ldots, k\}$  there is an initial mean  $\mu_i^0 \in \mathbb{R}^q$ . The following two steps are iterated until convergence:

1. A cluster  $z_i$  is assigned to each data point  $x_i$  such that

$$z_i \in \operatorname{argmin}_{z \in \{1, \dots, k\}} d(\mu_z^t, z)$$
.

2. New means are calculated:

$$\mu_i^{t+1} = \operatorname{average}(\{x_j \mid z_j = i\}) .$$

Apply the 2-means algorithm to the data points

$$(-2, -1), (0, -1), (0, -3), (2, 2), (2, 4), (4, 2), (4, 4)$$

with initial means  $\mu_1^0 = (2, 2)$  and  $\mu_2^0 = (5, 4)$ , using the Euclidean distance.

#### **Exercise 4**

Mrs. Brown flips two fair coins.

- 1. Assume that the first coin comes up head. What is the probability that the other coin comes up head also?
- 2. Assume that at least one coin comes up head. What is the probability that the other coin comes up head also?

### Exercise 5

[Ben08] Suppose that 1 in 10000 people is a carrier of a certain virus. We have a test for this virus which gives a positive result if a person is a carrier with probability 0.99. The test also shows false positive results, i.e., a non-carrier tests positive, say with probability 0.0001. This sounds like a reliable and valuable test.

Suppose a person chosen at random from the population takes the test and the result is positive, what is the probability that the person is actually a carrier?

## Literatur

[Ben08] A. Ben-Naim. A farewell to Entropy: Statistical Thermodynamics Based on Information. World Scientific Pub Co Inc, 2008. ISBN: 9812707077.