Formale Baumsprachen

Task 14 (construction of Bar-Hillel, Perles, and Shamir)

Consider the ranked alphabet $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}, \lambda^{(0)}\}$ and the fta $\mathcal{A} = (Q, \Sigma, \delta, F)$ where $Q = \{e, o\}, F = \{e\}, \text{ and }$

$$\delta_\alpha = \delta_\beta = \delta_\gamma = \{(\varepsilon,o)\}, \qquad \quad \delta_\sigma = \{(q_1q_2,q_0) \in Q^2 \times Q \mid q_0 = o \text{ iff } q_1 = q_2\}.$$

Moreover, let us assume an fsa $\mathcal{B}=(P,\Delta,p,\mu,G)$ where $\Delta=\Sigma^{(0)}\setminus\{\lambda\},\,P=\{p,r\},\,G=\{r\},$ and

$$\mu = \{(p,\alpha,p), (p,\beta,r), (r,\beta,r)\}.$$

(a) Using the technique from the lecture, construct an fta \mathcal{A}' such that

$$L(\mathcal{A}') = L(\mathcal{A}) \cap \text{yield}_{\lambda}^{-1}(L(\mathcal{B})).$$

(b) Are there "superfluous" transitions in \mathcal{A}' we might remove?

Task 15 (construction for $Rec \subseteq Rat$)

Consider the ranked alphabet $\Sigma = {\alpha^{(0)}, \gamma^{(1)}}.$

(a) Give sets N and P such that the regular tree grammar $G=(N,\Sigma,Z,P)$ recognizes the language

 $L = \left\{ \xi \in T_{\Sigma} \mid \text{the number of occurrences of } \gamma \text{ in } \xi \text{ is } not \text{ divisible by } 3 \right\}.$

(b) Convince yourself that $L_{Z,\emptyset}^N = L$ using the following definition and property:

Definition. For every $Q, K \subseteq N$ such that $Q \cap K = \emptyset$, and for every $A \in N$:

$$\begin{split} L_{A,K}^Q &= \big\{ \xi \in T_{\varSigma}(K) \mid \text{there is a derivation } A \Rightarrow_G \xi_1 \Rightarrow_G \ldots \Rightarrow_G \xi_n \Rightarrow_G \xi_{n+1} = \xi \text{ with} \\ & n \geq 0 \text{ such that for every } i \in [n] \colon \xi_i \in T_{\varSigma}(Q \cup K) \text{ and a rule with} \\ & \text{left-hand side in } Q \text{ is applied to } \xi_i \text{ to obtain } \xi_{i+1} \big\} \end{split}$$

Property. For every $Q, K \subseteq N$ and $A, B \in N$ such that $B \in N \setminus Q$ and $(Q \cup \{B\}) \cap K = \emptyset$:

$$L_{A,K}^{Q \cup \{B\}} = L_{A,K \cup \{B\}}^{Q} \cdot_{B} \left(L_{B,K \cup \{B\}}^{Q}\right)_{B}^{*} \cdot_{B} L_{B,K}^{Q}$$