Formale Baumsprachen

Task 11 (closure of Rec under intersection, union, and complement)

Let $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}, \beta^{(0)}\}$ be a ranked alphabet. Consider the following recognizable tree languages

$$\begin{split} L_1 &= \big\{ \xi \in T_{\Sigma} \mid \text{for every } w \in \text{pos}(\xi) : w \in \{2\}^* \text{ if and only if } \xi(w) \in \{\sigma, \alpha\} \big\} \text{ and } \\ L_2 &= \big\{ \xi \in T_{\Sigma} \mid \text{for every } w \in \text{pos}(\xi) : \xi(w) = \alpha \text{ only if } |w| \equiv 0 \pmod{2} \big\}. \end{split}$$

Find finite representations for the following languages:

(a) L_1 (b) L_2 (c) $L_1 \cup L_2$ (d) $L_1 \cap L_2$ (e) $T_{\Sigma} \smallsetminus L_1$

Task 12 (concatenation and Kleene star for recognizable tree languages)

Let \varSigma be a ranked alphabet.

- (a) Show that $\text{Rec}(\Sigma)$ is closed under top concatenation without using the fact that it is closed under tree concatenation.
- (b) Why can we not use the closure of $\text{Rec}(\Sigma)$ under tree concatenation to prove the closure under Kleene star?

Prove or refute the following two statements:

- (c) For every $\alpha \in \Sigma^{(0)}$, the binary operation \cdot_{α} is associative.
- $(\mathrm{d}) \ (L_1 \cdot_{\alpha} L_2) \cdot_{\beta} L_3 = L_1 \cdot_{\alpha} (L_2 \cdot_{\beta} L_3) \text{ for arbitrary } L_1, L_2, L_3 \in \operatorname{Rec}(\varSigma) \text{ and } \alpha, \beta \in \varSigma^{(0)}.$

Let $\Delta = \{\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}\}$ be a ranked alphabet.

(e) Using the construction from the lecture, show that $\{\sigma(\alpha,\beta)\}^*_{\beta} \cdot_{\beta} \{\alpha\} \in \operatorname{Rec}(\Sigma)$.

Task 13 (relabelings)

(a) Show that any relabeling preserves the image under pos.

Let \varSigma and \varDelta be ranked alphabets.

- (b) Under which conditions is there a relabeling between trees over Σ and trees over Δ ?
- (c) Let τ be a relabeling between trees over Σ and trees over Δ . Now consider $\sigma \in \Sigma, \xi \in T_{\Sigma}$, and $L \subseteq T_{\Sigma}$. Quantify τ in the following expressions:
 - (i) $\tau(\sigma)$, (ii) $\tau(\xi)$, and (iii) $\tau(L)$