Formale Übersetzungsmodelle

Exercise 37 (Top-down tree transducer with regular look-ahead)

Let $T = (Q, \Sigma, \Delta, I, R)$ be a top-down tree transducer with regular look-ahead.

- (a) Give a formal definition of the derivation relation of T.
- (b) Give a formal definition of the tree transformation induced by T.

Exercise 38 ($TOP^{R} \subseteq d$ - $QREL \circ TOP$)

Let $L_1, \ldots, L_n \in \text{REC}(\Sigma)$ be recognizable tree languages, $U = \{0, 1\}^n$, and Σ and Ω be ranked alphabets where

$$\Omega = \left\{ \left\langle \sigma, (u_1, \dots, u_k) \right\rangle^{(k)} \mid \sigma \in \Sigma, \, \mathrm{rk}(\sigma) = k, \, u_1, \dots, u_k \in U \right\}.$$

If k = 0, we write σ rather than $\langle \sigma, () \rangle$.

Consider the function $B: T_{\Sigma} \to T_{\Omega}$, defined as follows. For every $k \in \mathbb{N}$, $\sigma \in \Sigma^{(k)}$, and $t_1, \ldots, t_k \in T_{\Sigma}$, we let

$$B(\sigma(t_1,\ldots,t_k)) = \tau(B(t_1),\ldots,B(t_k)),$$

where $\tau = \langle \sigma, (u_1, \dots, u_k) \rangle$ and $u_i(j) = 1$ iff $t_i \in L_j$ for every $1 \le i \le k$ and $1 \le j \le n$.

- (a) Give a deterministic state-relabeling bu-tt that computes *B*.
- (b) Let $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}, \beta^{(0)}\}$ be a ranked alphabet, n = 2, and $L_1 = \{\gamma^k(\beta) \mid k \in \mathbb{N}\}$ and $L_2 = \{\gamma^k(\alpha) \mid k \in \mathbb{N}\}$ be recognizable tree languages. Construct a deterministic state-relabeling bu-tt for L_1 and L_2 .

Exercise 39 (l-BOT = l- TOP^{R})

Consider the linear bu-tt $B = (Q, \Sigma, \Delta, F, R)$ where $\Sigma = \Delta = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}, \beta^{(0)}\}, Q = \{*, q, q_f\}, F = \{q_f\}, \text{ and } R \text{ contains}$

$$\begin{aligned} \alpha &\to q(\alpha), & \alpha \to *(\alpha), & \beta \to *(\beta), \\ \gamma(q(x_1)) &\to q(\gamma(x_1)), & \gamma(*(x_1)) \to *(\gamma(x_1)), & \sigma(*(x_1), q(x_2)) \to q_f(x_1), \\ \sigma(*(x_1), *(x_2)) &\to *(\sigma(x_1, x_2)). \end{aligned}$$

- (a) Give a linear td-tt with regular look-ahead *T* such that $\tau(T) = \tau(B)$.
- (b) Construct a deterministic state-relabeling bu-tt B' and a linear td-tt T' such that $\tau(T) = \tau(B') \circ \tau(T')$.