
Vanda Studio – Instructive, Rapid Experiment Development

Matthias Büchse∗
Technische Universität Dresden
matthias.buechse@tu-dresden.de

Abstract

Statistical machine translation research
routinely involves conducting experiments
on a computer. Designing and run-
ning those experiments is tedious, because
many different programs have to be op-
erated in concert, and the threshold for
novices is high. This paper reports on
Vanda Studio, an integrated development
environment that allows for rapid incre-
mental design of small-scale experiments,
both for teaching and prototyping.

1 Introduction

Research in statistical machine translation (SMT),
as well as building an SMT system, routinely in-
volves the task of designing and running exper-
iments on a computer. Engineers who take on
that task can be compared to conductors, because
many computer programs must work in concert for
an experiment to work. Unfortunately, these pro-
grams do not adhere to a coherent standard when it
comes to command-line syntax, data formats, di-
rectory structures, and documentation.

Consequently, the engineer’s life is made eas-
ier when the execution of these programs is au-
tomated, and when these programs are integrated
into a coherent environment. Even more pro-
foundly, so are the lives of students and re-
searchers alike who want to enter the area of SMT.

This paper is a report on Vanda Studio, an in-
tegrated development environment that allows for
rapid incremental experiment design, in particular
for learning and teaching SMT. As an example of
an experiment, we consider the tree-to-string ap-
proach to SMT (Yamada and Knight, 2001; Gal-
ley et al., 2004; Huang et al., 2006; Graehl et al.,

∗With input from Heiko Vogler, Toni Dietze, Johannes
Osterholzer, and Torsten Stüber, and help from Tobias
Denkinger, Kilian Gebhardt, Anja Fischer, Linda Leuschner,
Hans-Jakob Holtz, and Ralf Müller.

ecorpus

egram m ar Berkeley Parser

fcorpus

GIZA

GHKM Sink

Figure 1: Rule extraction experiment, visualized
as a workflow diagram.

2008), where the translation process follows rules
such as

NP

NP

DT

the

x1:NNP POS

’s

x2:JJ x3:NN
−→ das x2 x3 der x1 .

Using this rule, among others, one might trans-
late a syntax tree of “the Commission’s strategic
plan” into “das langfristige Programm der Kom-
mission”. The rules are extracted from existing
translations. Roughly speaking, the following four
steps are performed (cf. Fig. 1).

First, obtain a parallel corpus of existing
translations, e.g., from the Europarl proceedings
(Koehn, 2005) or the Canadian Hansards. The par-
allel corpus is represented as two sentence-aligned
monolingual corpora (called ecorpus and fcorpus
in the figure). Second, compute a word alignment
for each sentence pair using the program GIZA
(Och and Ney, 2000), plus a program for sym-
metrizing alignments (Och and Ney, 2003, Sec-
tion 4), which is not shown. We refer the reader
to (Koehn, 2010, Sections “Run GIZA” and “Align
Words”) for details. Third, determine a syntax tree
for each English sentence, i.e., convert the cor-
pus into a tree bank. To this end, we may use
the Berkeley parser (Petrov et al., 2006), egret,
or some other parser. Finally, apply the GHKM
rule extraction algorithm (Galley et al., 2004) to
the alignments file, the tree bank, and the foreign-
language corpus. An implementation by Michael
Galley is available from Stanford (Galley, 2010).

Figure 2: Vanda Studio GUI Layout.

Together these four steps comprise an experiment.
A user of Vanda Studio constructs a workflow

diagram such as in Fig. 1 to describe the experi-
ment. In fact, the figure has been exported from
Vanda Studio to PDF. The user can run the ex-
periment from inside Vanda Studio, and she can
easily inspect pieces of data thanks to data visual-
ization, e.g., for word alignments and trees. She
can alter the experiment and rerun it; there are no
unnecessary duplicate computations.

We envision the following use cases for Vanda
Studio: playfully getting acquainted with SMT
tools and their interaction, incrementally design-
ing small-scale experiments, e.g., in front of a
class or for rapid prototyping, collecting (and pos-
sibly grading) experiments designed by students.

The main part of this paper (Sections 2–8) is a
tour of the basic abstractions and functions that de-
fine Vanda Studio. Section 9 shows related work,
and Section 10 concludes the paper.

2 GUI Layout

The GUI consists of four major parts (see Fig. 2):
• the workspace (background). The user freely

arranges the workflow elements using the
mouse.

• the tool palette (bottom left). The user drags
tools into the workspace in order to add a step
to the experiment.

• the inspector window (bottom center). It dis-
plays information regarding the currently se-
lected element, including data visualization.

• the map (bottom right). It is used to navigate
the workspace.

3 Workflows

The basic setup of an experiment is described by
a workflow such as the one in Fig. 1. A workflow

is a directed acyclic graph that consists of the fol-
lowing three parts:

• Jobs with input and output ports. A job is
either a tool instance, i.e., an invocation of
a program such as GIZA, or a literal, i.e., a
variable such as ecorpus, which has a fixed
value during the course of one run of the
workflow. In the diagram, a job is depicted
as a box with input ports to the left and out-
put ports to the right.

• Locations. A location holds a piece of data
during and after the execution of the work-
flow; apart from a few exceptions, a location
is a file. Locations and output ports are in a
one-to-one correspondence. In the diagram,
a location is depicted as a circle at an output
port. Locations are used to inspect data.

• Edges, which indicate data flow. An edge
connects a location to an input port. A lo-
cation can have several outgoing edges, or
none, while an input port must have exactly
one ingoing edge.

Although not shown in the diagram, ports and lo-
cations are typed. As a consequence, one cannot
connect a location holding a grammar to an input
port that expects a sentence corpus. Likewise, one
can only assign a value to a literal if the type is
respected, i.e., ecorpus must be a sentence corpus,
while egrammar must be a grammar for the Berke-
ley Parser. The type system is not only a safety
measure—type information is also used by Vanda
Studio to select the GUI for data visualization.

An alternative, more explicit representation for
workflows is illustrated in Fig. 3. It is a finite set
of formal equations of the forms

{literal/x1} = Literal[name :: type]{}
{o1/x1, . . . ,om/xm} = Tool{i1/y1, . . . ,in/yn} ,

where each equation corresponds to a job, each
variable xj or yj stands for a location, the left-
hand side describes bindings of variables xj to
output ports oj (implicit in the diagram represen-
tation), and the right-hand side describes bindings
of variables yj to input ports ij . The first form de-
scribes a literal with its name and type, the sec-
ond form an instance of the tool named Tool. The
system of equations must be nonrecursive, i.e., the
data dependencies must be acyclic.

4 Tool Interfaces

Our view of a workflow is a very liberal one: it
does not predefine any tool name, nor does it spec-

2

{literal/x1} = Literal[ecorpus :: SentenceCorpus]{}
{literal/x2} = Literal[fcorpus :: SentenceCorpus]{}
{literal/x3} = Literal[egrammar :: BerkeleyGrammar]{}

{alignments/x4} = GIZA{english corpus/x1,french corpus/x2}
{tree corpus/x5} = BerkeleyParser{corpus/x1,grammar/x3}

{rules/x6} = GHKM{alignments/x4,tree corpus/x5,sentence corpus/x2}
{} = Sink{inport/x6}

Figure 3: Equational workflow representation corresponding to Figure 1.

ify the input and output ports of a tool. For exam-
ple, as per our definition, we could use some tool
Megatool twice, with varying input and output
ports. Naturally, it is hard to systematically assign
a meaning (e.g., an executable shell script) to such
a workflow. On the other hand, if our definition of
a workflow were to contain tool specifications, it
would be outdated pretty soon.

The concept of a tool interface constitutes a
compromise. A tool interface is a collection of
specifications for thematically related tools. Put in
terms of an analogy, a tool interface is to a tool as
a Java interface is to a function. On the one hand,
tool interfaces allow the user to design her exper-
iment to a clear and well-documented specifica-
tion. In fact, the GUI shows a palette of all tools
that are part of a registered tool interface, and the
user inserts instances of these tools into the work-
flow using drag and drop. On the other hand, tool
interfaces allow Vanda Studio developers to build
semantics to a clear specification as well. In other
words, tool interfaces act as a contract between the
user and the developer.

Moreover, tool interfaces allow for a flexible,
modular syntax definition. New tool interfaces
can always be added as needed, and outdated tool
interfaces can be superseded by newer versions.
Note that, technically, a new version is no differ-
ent from a new tool interface because specifica-
tions should not be altered retroactively.

5 Assignments and Data Sources

Every literal must be assigned a value in order for
the workflow to be runnable. Table 1 illustrates
three possible such parameter assignments, cor-
responding to the following scenarios: extracting
rules from English to German, once with a small
portion of Europarl and once with a large por-
tion, and extracting rules from German to English,
again with the small portion (notice the change in

identifier data source
europarl directory;

path: /home/user/europarl,
filter: *,
type: SentenceCorpus

gramm directory;
path: /opt/bin/berkeley,
filter: *.gr,
type: BerkeleyGrammar

integer integer

Table 2: A registry of data sources.

Figure 4: Editing a literal value in the inspector.

the grammar).
The prefixes europarl: and gramm: arise

from the concept of data sources. Conceptually
a data source is a set of objects, such as corpora,
grammars, or just real numbers, each with a type
information. In addition, a data source encom-
passes the GUI that allows the user to choose an
object. The two most prominent data sources are
the integer data source, where the user just enters
an integer, and the directory data source, where
the user can choose a file. A directory data source
is determined by a path in the file system, a file-
name filter, and a type; and it consists of all files
below that path matching that filter, and each file
is assumed to be of that type.

Vanda Studio keeps a registry of data sources,
which is just a mapping from identifiers to data
sources, as illustrated in Table 2. Any object is
then referenced in the way shown in Table 1.

3

ecorpus fcorpus egrammar
(1) europarl:en/small.txt europarl:de/small.txt gramm:eng sm6.gr
(2) europarl:en/large.txt europarl:de/large.txt gramm:eng sm6.gr
(3) europarl:de/small.txt europarl:en/small.txt gramm:ger sm5.gr

Table 1: Three assignments for the literals.

Together with each workflow Vanda Studio
keeps a table of assignments and a row index. The
user can select a literal in the workflow diagram to
edit its value at the current row, or she can open
up the table as a whole. Figure 4 shows the former
case: the combobox on the right-hand side (read-
ing “europarl”) is for selecting the data source, and
the part below is for selecting an object.

6 Semantics

A workflow is a syntactic object that has to be in-
terpreted so that it can be run. The present imple-
mentation converts a workflow, together with a pa-
rameter assignment, into a shell script. It proceeds
as follows.

First, each location is assigned a value. If the
location is at a literal, then the location value is
the literal value, expanded according to the data
source: europarl:en/small.txt becomes
/home/user/europarl/en/small.txt,
and integer:10 becomes 10. If the location
is at a tool instance, then the literal value is the
concatenation of the tool name, the MD5 hash
of its input values, and the corresponding output
port name. The same value, but without the
output port, is used by the tool as a directory
name for temporary files and logging. Note
that due to the naming scheme, a location value
uniquely determines its contents. This is crucial
for avoiding duplicate computations and thus for
incrementality.

Second, the jobs are translated in topological or-
der. Literals are already accounted for, as their
contribution is in the location values. An in-
stance of tool X is translated as a call to a func-
tion named X. The values of the locations corre-
sponding to the input and output ports are passed
as arguments.

The present implementation keeps a registry of
possible functions, which is automatically popu-
lated by scanning shell scripts for functions with
appropriate annotations (cf. Fig. 5). Whether these
annotated functions conform to a tool interface is
easily verified.

Vanda Studio includes data visualization that

GIZA
IN english corpus :: SentenceCorpus
IN french corpus :: SentenceCorpus
OUT alignments :: Alignments
GIZA () {
(implementation)

}

Figure 5: Shell function with tool annotation.

Figure 6: Data visualization: alignments, trees.

makes inspecting the contents of a location easy.
Figure 6 shows the preview for an alignments file
as well as for a treebank file.

7 Experiment

An experiment consists of a workflow and a selec-
tion of parameter assignments. Running the exper-
iment amounts to creating the corresponding shell
scripts and running them. Running an experiment
can be done from within Vanda Studio; execution
takes place on the local machine. At present there
is limited run visualization, telling the user when
a job is being started or when it has finished.

8 Deployment

Vanda Studio consists of the GUI, which is a Java
program, and a few shell scripts. In particular, it

4

includes a rudimentary package management sys-
tem. A typical package either automatically down-
loads and installs third-party software such as the
Berkeley Parser, or it uses an existing installation
of that software, if directed to do so. This system
enables the user to restrict the amount of third-
party software to be installed on the system, and
it permits updating individual components.

Note that the package system is orthogonal to
the tool interface system. On the one hand, the
systems need not use the same granularity. On
the other hand, there may be several implemen-
tations of the same tool interface, each packaged
separately, and the user may decide to install any
number of implementations, or none.

Packages can also be used to deploy data, such
as the Europarl corpus. The installation script can
download the data and perform any preprocessing
steps such as stripping extraneous information or
tokenizing. It can also register a corresponding
data source. Alternatively, it can provide a tool
that takes a language and a chapter number and
outputs the corresponding corpus.

9 Related Work

We compare the qualities of six methods for run-
ning experiments that are available at present; see
Table 3. The methods are

• command line,
• shell script,
• GNU make,
• the Experiment Management System (EMS)

(Koehn, 2010, Section “experiment.perl”),
• LoonyBin (Clark and Lavie, 2010), and
• Vanda Studio,

and the qualities are
• incrementality (i.e., the user can develop and

test the experiment one step at a time),
• ease-of-use (i.e., the method is fool-proof),
• reproducibility (on the same machine),
• portability (to a different configuration),
• robustness (i.e., detection of failures during

execution, resume after failure),
• parameterizability (i.e., the experiment can

be run with several parameter assignments),
• records (of the setup, legible),
• reports (of the execution, legible),
• visualization (of the setup),
• run visualization (of the execution),
• data visualization (of the data items), and
• concurrency (i.e., execution on a cluster).

command line script make
Incrementality X X
Reproducibility X X
Parameterizability X

EMS LoonyBin Vanda Studio
Incrementality X X X
Ease-of-use X X
Reproducibility X X X
Portability X
Robustness X X X
Parameterizability X X X
Records X X X
Reports X X X
Visualization X X X
Run visualization X X
Data visualization X
Concurrency X X

Table 3: Six methods of performing experiments,
along with their respective qualities. A check
mark is awarded when the quality in question is
supported by appropriate idioms in the method.

The first three methods perform poorly, and we
shall not discuss them here.

A user of the EMS writes a declarative script
called experiment.meta to describe the gen-
eral setup of the experiment. It contains a dec-
laration for each step, which consists of its in-
puts, outputs, and the program to be invoked,
among other things. And it uses variables to ab-
stract from concrete input files and other param-
eters. A separate configuration file contains the
concrete values. Execution is handled by a perl
script, experiment.perl. The EMS contains
facilities for monitoring the progress of the ex-
periment, including a dependency graph showing
which steps have been completed so far. Further-
more, the EMS can resume a crashed experiment,
it keeps a log of each step, and it allows for con-
current execution on a cluster.

However, portability is limited as the config-
uration file may need to be adapted to accom-
modate for varying file locations. Moreover,
the script experiment.meta must be meticu-
lously hand-crafted because it is a template for the
experiment as a whole. In other words, there is no
template mechanism for individual steps. For ex-
ample, if your experiment has two steps involving
the Berkeley Parser, you have to write two almost
identical declarations. In the context of the EMS’s
inception, which is Moses (Koehn et al., 2007),
this does not seem to be a problem because the
script is considered quasi fixed, and experiments
only vary in the configuration file.

5

A user of LoonyBin constructs, using drag-and-
drop operations, a workflow diagram similar to
Fig. 1 to describe the experiment. As opposed to
Vanda Studio, LoonyBin does not display individ-
ual input and output ports for the nodes; the ac-
tual connections are only evident when inspecting
a single edge. As opposed to the EMS, LoonyBin
has a template mechanism for steps: a tool like the
Berkeley Parser exists as an abstract concept, and
one can drag two instances of it into the workflow.
Execution is handled by converting the workflow
into a shell script. A single LoonyBin workflow
can describe several experiments, thanks to the OR
tool. In order to obtain a single experiment, each
OR node is resolved by routing exactly one of its
inputs to its output. The user selects the routing
combinations she deems relevant. LoonyBin has
facilities for logging, determining whether a step
needs to be (re)run, resume after failure, sanity
checks, and concurrent execution.

However, LoonyBin workflows reference con-
crete file names, which restricts portability. As a
workaround, one can use a tool node which copies
the file in question from a central source, such as
a file server, to the working directory. However,
it may be preferable not to repeat such a step for
each experiment. Moreover, the latest release of
LoonyBin was in 2010, and it does not appear very
smooth. The LoonyBin authors review additional
methods (Clark and Lavie, 2010, Section 5).

10 Conclusion

Vanda Studio is an SMT workbench that allows
rapid incremental design of small-scale experi-
ments, be it for teaching or rapid prototyping.
Suitable abstractions such as data types, data
sources, tool interfaces, and workflows on the one
hand and simple details such as informative loca-
tion values and package management on the other
hand make Vanda Studio versatile and easy to use.
For instance, an instructor can playfully and incre-
mentally design an experiment in front of class,
and students can reenact the steps on location or at
home. Experiments designed by students can run
on the instructor’s computer as long as the data
sources are configured accordingly.

As yet, concurrent execution on a cluster is not
supported. This paradigm necessitates proper al-
location of resources (compute nodes, memory)
to jobs, which Vanda Studio’s abstractions do not
cover. Augmenting the abstractions accordingly

is a possibility for future research. So is support
for macros. In addition, it would be interesting
to increase the granularity of SMT tools to a point
where even a decoder can be designed graphically.

References
Jonathan H. Clark and Alon Lavie. 2010. Loonybin:

Keeping language technologists sane through
automated management of experimental (hy-
per)workflows. In Proceedings LREC 2010.

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation rule?
In Proc. HLT/NAACL, pages 273–280.

Michael Galley. 2010. GHKM rule extractor. http:
//www-nlp.stanford.edu/˜mgalley/
software/stanford-ghkm-latest.tar.
gz, retrieved on March 28, 2012.

Jonathan Graehl, Kevin Knight, and Jonathan May.
2008. Training tree transducers. Computational
Linguistics, 34(3):391–427.

Liang Huang, Kevin Knight, and Aravind Joshi. 2006.
Statistical syntax-directed translation with extended
domain of locality. In Proc. 7th AMTA, pages 66–
73.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexan-
dra Constantin, and Evan Herbst. 2007. Moses:
open source toolkit for statistical machine transla-
tion. In Proc. ACL Interactive Poster and Demon-
stration Sessions, pages 177–180.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proc. of MT Sum-
mit X, pages 79–86.

Philipp Koehn. 2010. Moses documentation.
http://www.statmt.org/moses/, accessed
on April 07, 2013.

Franz Josef Och and Hermann Ney. 2000. Improved
statistical alignment models. In Proc. ACL, pages
440–447.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19–51,
March.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and in-
terpretable tree annotation. In Proc. COLING/ACL,
pages 433–440.

Kenji Yamada and Kevin Knight. 2001. A syntax-
based statistical translation model. In Proc. ACL,
pages 523–530.

6

