Parsing of Natural Languages

Heiko Vogler / Dresden, Germany
joint work with
Frank Drewes / Umeå, Sweden
Mark-Jan Nederhof / St Andrews, Scotland
Kilian Gebhardt / Dresden
Markus Teichmann / Dresden
[Chomsky 56]: Three Models for the Description of Language.
"There are two central problems in the descriptive study of languages. One primary concern of the linguist is to discover simple and *revealing* grammars for natural languages. At the same time, by studying the properties of such successful grammars ..., he hopes to arrive at a general theory of linguistic structure."
[Chomsky 56]: Three Models for the Description of Language.
"There are two central problems in the descriptive study of languages. One primary concern of the linguist is to discover simple and *revealing* grammars for natural languages.
At the same time, by studying the properties of such successful grammars ..., he hopes to arrive at a general theory of linguistic structure."
context-free grammar:

phrase structure tree:

E : natural language \mathcal{H} : set of syntactic structures

parsing : $E \rightarrow \mathcal{H}$

E : natural language \mathcal{H} : set of syntactic structures

$$
\text { parsing : } E \rightarrow \mathcal{H}
$$

parsing with context-free grammar G :

Outline

- Syntax of natural language sentences
- Ambiguity and parsing
- A particular "simple and revealing grammar" model
- Probabilistic hybrid grammars

Outline

- Syntax of natural language sentences
- Ambiguity and parsing
- A particular "simple and revealing grammar" model
- Probabilistic hybrid grammars

Bob $_{1} \quad$ cuts $_{2} \quad$ the ${ }_{3} \quad$ grass $_{4}$
phrase structure tree:

Bob $_{1}$ cuts $_{2}$ the ${ }_{3}$ grass $_{4}$
phrase structure tree:

phrase structure tree: (continuous)

continuous:
each tree position covers an interval of sentence positions
hat ${ }_{1}$
(has)
schnell ${ }_{2}$
(fast)

gekocht 3
(cooked)

phrase structure tree:

hat ${ }_{1}$
(has)
schnell 2
(fast)
gekocht 3
(cooked)
phrase structure tree:

phrase structure tree: (discontinuous)

[Tesnière 59]

$$
\text { Bob }_{1} \quad \text { cuts }_{2} \quad \text { the }_{3} \quad \text { grass }_{4}
$$

Bob $_{1} \quad$ cuts $_{2} \quad$ the $3_{3} \quad$ grass $_{4}$

dependency tree: (projective)

projective:
each tree position covers an interval of sentence positions
$\begin{array}{ccccccc}\text { (dat) } & \text { Jan }_{1} & \text { Piet }_{2} & \text { Marie }_{3} & \text { zag }_{4} & \text { helpen }_{5} & \text { lezen }_{6} \\ \text { (that) } & & & & \text { (saw) } & \text { (help) } & \text { (read) }\end{array}$
dependency tree:

$\begin{array}{ccccccc}\text { (dat) } & \text { Jan }_{1} & \text { Piet }_{2} & \text { Marie }_{3} & \text { zag }_{4} & \text { helpen }_{5} & \text { lezen } \\ \text { (that) } & & & & \text { (saw) } & \text { (help) } & \text { (read) }\end{array}$
dependency tree:
$\begin{array}{ccccccc}\text { (dat) } & \text { Jan }_{1} & \text { Piet }_{2} & \text { Marie }_{3} & \text { zag }_{4} & \text { helpen }_{5} & \text { lezen }_{6} \\ \text { (that) } & & & & \text { (saw) } & \text { (help) } & \text { (read) }\end{array}$
dependency tree: (non-projective)

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U
phrase structure trees:
$U=\operatorname{leaves}(\xi)$

hat ${ }_{1}$
schnell ${ }_{2}$
gekocht 3

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U
phrase structure trees:
$U=\operatorname{leaves}(\xi)$

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U
phrase structure trees:
$U=\operatorname{leaves}(\xi)$

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U

$$
h:
$$

Piet ${ }_{2} \quad$ lezen ${ }_{6}$
Marie ${ }_{3}$

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U

$$
h:
$$

Piet $2 \quad$ lezen ${ }_{6}$

Marie ${ }_{3}$

$\operatorname{str}(h)=$

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U
h :

Piet ${ }_{2} \quad$ lezen ${ }_{6}$

Marie ${ }_{3}$

$\operatorname{str}(h)=\mathbf{J a n}_{1}$

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U

$$
\operatorname{str}(h)=\operatorname{Jan}_{1} \text { Piet } 2
$$

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U
$h: \quad \operatorname{zag}_{4}$
Jan ${ }_{1}$
helpen 5

$\operatorname{str}(h)=$ Jan $_{1}$ Piet $_{2}$ Marie $_{3}$

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U

Marie ${ }_{3}$

$$
\operatorname{str}(h)=\text { Jan }_{1} \quad \text { Piet }_{2} \quad \text { Marie }_{3} \text { zag }_{4}
$$

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U

Marie ${ }_{3}$

$$
\operatorname{str}(h)=\text { Jan }_{1} \quad \text { Piet }{ }_{2} \quad \text { Marie }_{3} \text { zag }_{4} \text { helpen }_{5}
$$

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U

Jan ${ }_{1}$
helpen 5
Piet ${ }_{2}$
lezen 6
Marie ${ }_{3}$
$\operatorname{str}(h)=$ Jan $_{1}$ Piet $_{2}$ Marie $_{3}$ zag $_{4}$ helpen $_{5}$ lezen 6

Let Σ be a ranked alphabet. A hybrid tree is a tuple $h=(\xi, U, \preceq)$ where

- ξ is a tree over Σ
- $U \subseteq \operatorname{pos}(\xi)$
- \preceq linear order on U

$\operatorname{str}(h)=$ Jan $_{1}$ Piet $_{2}$ Marie $_{3}$ zag $_{4}$ helpen $_{5}$ lezen ${ }_{6}$

Outline

- Syntax of natural language sentences
- hybrid trees: phrase structure trees, dependency trees
- Ambiguity and parsing
- A particular "simple and revealing grammar" model
- Probabilistic hybrid grammars

Outline

- Syntax of natural language sentences
- hybrid trees: phrase structure trees, dependency trees
- Ambiguity and parsing
- A particular "simple and revealing grammar" model
- Probabilistic hybrid grammars

E : natural language \mathcal{H} : set of syntactic structures

$$
\begin{aligned}
& \text { parsing }: E \rightarrow \mathcal{H} \\
& \operatorname{parsing}(e)=\operatorname{argmax} \underset{\operatorname{str}(h)=e}{h \in \mathcal{H}:} P P(h \mid \mathcal{M})
\end{aligned}
$$

where

- \mathcal{M} : probabilistic language model
- $P(h \mid \mathcal{M}):$ probability of h given \mathcal{M}

Outline

- Syntax of natural language sentences
- hybrid trees: phrase structure trees, dependency trees
- Ambiguity and parsing
- probabilistic language models
- A particular "simple and revealing grammar" model
- Probabilistic hybrid grammars

Outline

- Syntax of natural language sentences
- hybrid trees: phrase structure trees, dependency trees
- Ambiguity and parsing
- probabilistic language models
- A particular "simple and revealing grammar" model
- Probabilistic hybrid grammars
probabilistic linear context-free rewriting systems (prob. LCFRS) (G, p)
[Vijay-Shanker, Weir, Joshi 87]
[Seki, Matsumura, Fujii, Kasami 91]
probabilistic linear context-free rewriting systems (prob. LCFRS) (G, p) [Vijay-Shanker, Weir, Joshi 87] [Seki, Matsumura, Fujii, Kasami 91]

LCFRS G:

S		N	V
V		N	V
V	\rightarrow	N	
N		ε	
N		ε	
N		ε	

probabilistic linear context-free rewriting systems (prob. LCFRS) (G, p) [Vijay-Shanker, Weir, Joshi 87] [Seki, Matsumura, Fujii, Kasami 91]

LCFRS G:

S	$\rightarrow N(x) V\left(y_{1}, y_{2}\right)$
V	$\rightarrow N(x) V\left(y_{1}, y_{2}\right)$
V	$\rightarrow N(x)$
N	$\rightarrow \varepsilon$
N	$\rightarrow \varepsilon$
N	$\rightarrow \varepsilon$

fanout $(S)=\operatorname{fanout}(N)=1$
fanout $(V)=2$
probabilistic linear context-free rewriting systems (prob. LCFRS) (G, p) [Vijay-Shanker, Weir, Joshi 87] [Seki, Matsumura, Fujii, Kasami 91]

LCFRS G:

$$
\begin{array}{ll}
S\left(x y_{1} \text { zag } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V\left(x y_{1}, \text { helpen } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V(x, \text { lezen }) & \rightarrow N(x) \\
N(\text { Jan }) & \rightarrow \varepsilon \\
N(\text { Piet }) & \rightarrow \varepsilon \\
N(\text { Marie }) & \rightarrow \varepsilon
\end{array}
$$

fanout $(S)=\operatorname{fanout}(N)=1$
no copying/deletion of variables
fanout $(V)=2$
probabilistic linear context-free rewriting systems (prob. LCFRS) (G, p) [Vijay-Shanker, Weir, Joshi 87] [Seki, Matsumura, Fujii, Kasami 91]

LCFRS G:

$S\left(x y_{1}\right.$ zag $\left.y_{2}\right)$	$\rightarrow N(x) V\left(y_{1}, y_{2}\right)$	1
$V\left(x y_{1}\right.$, helpen $\left.y_{2}\right)$	$\rightarrow N(x) V\left(y_{1}, y_{2}\right)$	0.5
$V(x$, lezen $)$	$\rightarrow N(x)$	0.5
$N($ Jan $)$	$\rightarrow \varepsilon$	0.33
$N($ Piet $)$	$\rightarrow \varepsilon$	0.33
$N($ Marie $)$	$\rightarrow \varepsilon$	0.33

fanout $(S)=\operatorname{fanout}(N)=1$
fanout $(V)=2$
probabilistic linear context-free rewriting systems (prob. LCFRS) (G, p) [Vijay-Shanker, Weir, Joshi 87] [Seki, Matsumura, Fujii, Kasami 91]

LCFRS G:

$S\left(x y_{1}\right.$ zag $\left.y_{2}\right)$	$\rightarrow N(x) V\left(y_{1}, y_{2}\right)$	1
$V\left(x y_{1}\right.$, helpen $\left.y_{2}\right)$	$\rightarrow N(x) V\left(y_{1}, y_{2}\right)$	0.5
$V(x$, lezen $)$	$\rightarrow N(x)$	0.5
$N($ Jan $)$	$\rightarrow \varepsilon$	0.33
$N($ Piet $)$	$\rightarrow \varepsilon$	0.33
$N($ Marie $)$	$\rightarrow \varepsilon$	0.33

 \(V\left(x y_{1}\right.\), helpen \(\left.y_{2}\right) \rightarrow N(x) V\left(y_{1}, y_{2}\right) \quad 0.5\)
 \(V(x\), lezen \() \quad \rightarrow \quad N(x) \quad 0.5\)
 \(N(\) Jan \(\quad \rightarrow \varepsilon \quad 0.33\)
 \(N\) (Piet) \(\quad \rightarrow \varepsilon \quad 0.33\)
 \(N\) (Marie) \(\quad \rightarrow \varepsilon \quad 0.33\)
 fanout $(S)=$ fanout $(N)=1$
fanout $(V)=2$
probability assignment p : 1 . 33
probabilistic linear context-free rewriting systems (prob. LCFRS) (G, p) [Vijay-Shanker, Weir, Joshi 87] [Seki, Matsumura, Fujii, Kasami 91]

LCFRS G:

$S\left(x y_{1}\right.$ zag $\left.y_{2}\right)$	$\rightarrow N(x) V\left(y_{1}, y_{2}\right)$	1
$V\left(x y_{1}\right.$, helpen $\left.y_{2}\right)$	$\rightarrow N(x) V\left(y_{1}, y_{2}\right)$	0.5
$V(x$, lezen $)$	$\rightarrow N(x)$	0.5
$N($ Jan $)$	$\rightarrow \varepsilon$	0.33
$N($ Piet $)$	$\rightarrow \varepsilon$	0.33
$N($ Marie $)$	$\rightarrow \varepsilon$	0.33

fanout $(S)=\operatorname{fanout}(N)=1$
fanout $(V)=2$
probability assignment p :
0.33
lexicalized LCFRS G:

$$
\begin{aligned}
& S\left(\begin{array}{ll}
x & y_{1} \\
\text { zag } & \left.y_{2}\right)
\end{array} \rightarrow N(x) V\left(y_{1}, y_{2}\right)\right. \\
& V\left(x y_{1} \text {, helpen } y_{2}\right) \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
& V(x \text {, lezen }) \quad \rightarrow \quad N(x) \\
& N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon
\end{aligned}
$$

lexicalized LCFRS G:

$$
\begin{aligned}
& S\left(\begin{array}{ll}
x & y_{1} \\
\text { zag } & \left.y_{2}\right)
\end{array} \rightarrow N(x) V\left(y_{1}, y_{2}\right)\right. \\
& V\left(x y_{1} \text {, helpen } y_{2}\right) \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
& V(x \text {, lezen }) \quad \rightarrow \quad N(x) \\
& N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon
\end{aligned}
$$

$$
S\left(\mathbf{J}_{1} \mathbf{P}_{2} \mathbf{M}_{3} \mathbf{z}_{4} \mathbf{h}_{5} \boldsymbol{l}_{6}\right)
$$

lexicalized LCFRS G:

$$
\begin{array}{ll}
\hline S\left(x y_{1} \text { zag } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V\left(x \text { y } y_{1} \text {, helpen } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V(x, \text { lezen }) & \rightarrow N(x) \\
N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) & \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon \\
& \\
S\left(\mathbf{J}_{1} \mathbf{P}_{2} \mathbf{M}_{3} \mathbf{z}_{4} \mathbf{h}_{5} \boldsymbol{l}_{6}\right)
\end{array}
$$

lexicalized LCFRS G:

$$
\begin{aligned}
& S\left(x \mid \sqrt[y_{1}|z a g| y]{y_{2}}\right) \quad \rightarrow \quad N(x) V\left(y_{1}, y_{2}\right) \\
& V\left(x y_{1} \text {, helpen } y_{2}\right) \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
& V(x \text {, lezen }) \quad \rightarrow \quad N(x) \\
& N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon \\
& S\left(\begin{array}{l|ll|l|ll}
\mathbf{J}_{1} & \mathbf{P}_{2} & \mathbf{M}_{3} & \mathbf{z}_{4} & \mathbf{h}_{5} & \boldsymbol{l}_{6}
\end{array}\right)
\end{aligned}
$$

lexicalized LCFRS G:

$$
\begin{aligned}
& S\left(x\left|\sqrt{y_{1}} \mathbf{z a g}\right| y_{2}\right) \quad \rightarrow N(\mid x) V\left(y_{1}, y_{2}\right) \\
& V\left(x y_{1} \text {, helpen } y_{2}\right) \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
& V(x \text {, lezen }) \quad \rightarrow \quad N(x) \\
& N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon \\
& S\left(\begin{array}{l|ll|l|ll}
\mathbf{J}_{1} & \mathbf{P}_{2} & \mathbf{M}_{3} & \mathbf{z}_{4} & \mathbf{h}_{5} & \boldsymbol{l}_{6}
\end{array}\right)
\end{aligned}
$$

lexicalized LCFRS G:

$$
\begin{array}{ll}
\hline S\left(x \mid y_{1} \text { zag } y_{2}\right) & \left.\rightarrow N(x) V\left(y_{1}, y_{2}\right)\right) \\
V\left(x y_{1}, \text { helpen } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V(x, \text { lezen }) & \rightarrow N(x) \\
N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon
\end{array}
$$

$$
\begin{aligned}
& S\left(\begin{array}{l|ll|ll}
\mathbf{J}_{1} & \mathbf{P}_{2} & \mathbf{M}_{3} & \mathbf{z}_{4} & \mathbf{h}_{5} \boldsymbol{\ell}_{6} \\
\hline
\end{array}\right) \\
& N\left(\begin{array}{|ll}
\mathbf{J}_{1}
\end{array} \quad V\left(\mathbf{P}_{2} \mathbf{M}_{3}, \mathbf{h}_{5} \boldsymbol{\ell}_{6}\right)\right.
\end{aligned}
$$

lexicalized LCFRS G:

$$
\begin{array}{ll}
\hline S\left(x \mid y_{1} \text { zag } y_{2}\right) & \left.\rightarrow N(x) V\left(y_{1}, y_{2}\right)\right) \\
V\left(x \text { y }, \text { helpen } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V(x, \text { lezen }) & \rightarrow N(x) \\
N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon
\end{array}
$$

$$
\begin{aligned}
& S\left(\begin{array}{l|ll|l|ll}
\mathbf{J}_{1} & \mathbf{P}_{2} & \mathbf{M}_{3} & \mathbf{z}_{4} & \mathbf{h}_{5} \boldsymbol{\ell}_{6} \\
\hline & & & & & \\
\hline
\end{array}\right. \\
& N\left(\mathbf{J}_{1}\right) \quad \therefore V\left(\begin{array}{lll}
\mathbf{P}_{2} & \mathbf{M}_{3}, \mathbf{h}_{5} \boldsymbol{l}_{6}
\end{array}\right) \\
& \text { zag }
\end{aligned}
$$

lexicalized LCFRS G:

$$
\begin{array}{ll}
S\left(x y_{1} \text { zag } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V\left(x y_{1}, \text { helpen } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V(x, \text { lezen }) & \rightarrow N(x) \\
N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon
\end{array}
$$

$$
\begin{aligned}
& S\left(\begin{array}{llllll}
\mathbf{J}_{1} & \mathbf{P}_{2} & \mathbf{M}_{3} & \mathbf{z}_{4} & \mathbf{h}_{5} & \boldsymbol{l}_{6}
\end{array}\right) \\
& N\left(\mathbf{J}_{1}\right) \quad \vdots V\left(\mathbf{P}_{2} \mathbf{M}_{3}, \mathbf{h}_{5} \boldsymbol{l}_{6}\right)
\end{aligned}
$$

lexicalized LCFRS G:

$$
\begin{aligned}
& S\left(x y_{1} \text { zag } y_{2}\right) \quad \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
& V\left(x y_{1} \text {, helpen } y_{2}\right) \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
& V(x \text {, lezen }) \rightarrow N(x) \\
& N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& S\left(\begin{array}{llllll}
\mathbf{J}_{1} & \mathbf{P}_{2} & \mathbf{M}_{3} & \mathbf{z}_{4} & \mathbf{h}_{5} & \boldsymbol{l}_{6}
\end{array}\right) \\
& N\left(\mathbf{J}_{1}\right) \quad \vdots V\left(\mathbf{P}_{2} \mathbf{M}_{3}, \mathbf{h}_{5} \boldsymbol{l}_{6}\right)
\end{aligned}
$$

lexicalized LCFRS G:

$$
\begin{aligned}
& S\left(x y_{1} \text { zag } y_{2}\right) \quad \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
& V\left(x y_{1} \text {, helpen } y_{2}\right) \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
& V(x \text {, lezen }) \rightarrow N(x) \\
& N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon
\end{aligned}
$$

lexicalized LCFRS G:

$$
\begin{array}{ll}
S\left(x y_{1} \text { zag } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V\left(x y_{1}, \text { helpen } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V(x, \text { lezen }) & \rightarrow N(x) \\
N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon
\end{array}
$$

lexicalized LCFRS G:

$S\left(\begin{array}{lllll}x & y_{1} & z a g & y_{2}\end{array}\right)$	$\rightarrow N(x) V\left(y_{1}, y_{2}\right)$
$V\left(x y_{1}\right.$, helpen $\left.y_{2}\right)$	$\rightarrow N(x) V\left(y_{1}, y_{2}\right)$
$V(x$, lezen $)$	$\rightarrow N(x)$
$N(\mathrm{Jan}) \rightarrow \varepsilon \quad N(\mathrm{Pi}$	$\rightarrow \varepsilon \quad N($ Marie $)$

lexicalized LCFRS G:

| $S\left(x y_{1}\right.$ zag $\left.y_{2}\right)$ | $\rightarrow N(x) V\left(y_{1}, y_{2}\right)$ |
| :--- | :--- | :--- |
| $V\left(X \mid y_{1}\right.$, helpen $\left.y_{2}\right)$ | $\rightarrow N(\underline{x}) V\left(\underline{y_{1}}, y_{2}\right)$ |
| $V(x$, lezen $)$ | $\rightarrow N(x)$ |
| $N($ Jan $) \rightarrow \varepsilon \quad N($ Piet $) \rightarrow \varepsilon \quad N($ Marie $) \rightarrow \varepsilon$ | |

lexicalized LCFRS G:

$$
\begin{array}{ll}
S\left(x y_{1} \text { zag } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V\left(x y_{1}, \text { helpen } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V(x, \text { lezen }) & \rightarrow N(x) \\
N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon
\end{array}
$$

lexicalized LCFRS G:

$$
\begin{array}{ll}
S\left(x y_{1} \text { zag } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V\left(x y_{1}, \text { helpen } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V(x, \text { lezen }) & \rightarrow N(x) \\
N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon
\end{array}
$$

lexicalized LCFRS G:

$$
\begin{array}{ll}
S\left(x y_{1} \text { zag } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V\left(x y_{1}, \text { helpen } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V(x, \text { lezen }) & \rightarrow N(x) \\
N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon
\end{array}
$$

lexicalized LCFRS G:

$$
\begin{array}{ll}
S\left(x y_{1} \text { zag } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V\left(x y_{1}, \text { helpen } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V(x, \text { lezen }) & \rightarrow N(x) \\
N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon
\end{array}
$$

lexicalized LCFRS G:

$$
\begin{aligned}
& S\left(x y_{1} \text { zag } y_{2}\right) \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
& V\left(x y_{1} \text {, helpen } y_{2}\right) \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
& V(x, \text { lezen }) \rightarrow N(x) \\
& N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon
\end{aligned}
$$

(dat)
Jan
Piet
zag helpen
lexicalized LCFRS G:

$$
\begin{aligned}
& S\left(\begin{array}{ll}
x & y_{1} \\
\text { zag } & \left.y_{2}\right)
\end{array} \rightarrow N(x) V\left(y_{1}, y_{2}\right)\right. \\
& V\left(x y_{1} \text {, helpen } y_{2}\right) \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
& V(X, \text { lezen }) \quad \rightarrow \quad N(\boxed{X}) \\
& N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon
\end{aligned}
$$

lexicalized LCFRS G:

$$
\begin{array}{ll}
S\left(x y_{1} \text { zag } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V\left(x y_{1}, \text { helpen } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V(x, \text { lezen }) & \rightarrow N(x) \\
N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon
\end{array}
$$

lexicalized LCFRS G:

$$
\begin{array}{ll}
S\left(x y_{1} \text { zag } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V\left(x y_{1}, \text { helpen } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V(x, \text { lezen }) & \rightarrow N(x) \\
N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon N(\text { Marie }) \rightarrow \varepsilon
\end{array}
$$

lexicalized LCFRS G:

$$
\begin{array}{ll}
S\left(x y_{1} \text { zag } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V\left(x y_{1}, \text { helpen } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V(x, \text { lezen }) & \rightarrow N(x) \\
N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon N(\text { Marie }) \rightarrow \varepsilon
\end{array}
$$

lexicalized LCFRS G:

$$
\begin{array}{ll}
S\left(x y_{1} \text { zag } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V\left(x y_{1}, \text { helpen } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V(x, \text { lezen }) & \rightarrow N(x) \\
N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon
\end{array}
$$

lexicalized LCFRS G:

$$
\begin{array}{ll}
S\left(\begin{array}{ll}
x & \left.y_{1} \text { zag } y_{2}\right)
\end{array}\right. & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V\left(x y_{1}, \text { helpen } y_{2}\right) & \rightarrow N(x) V\left(y_{1}, y_{2}\right) \\
V(x, \text { lezen }) & \rightarrow N(x) \\
N(\text { Jan }) \rightarrow \varepsilon \quad N(\text { Piet }) \rightarrow \varepsilon \quad N(\text { Marie }) \rightarrow \varepsilon
\end{array}
$$

parsing $\left(\mathbf{J a n}_{1}\right.$ Piet $_{2}$ Marie $_{3}$ zag $_{4}$ helpen $_{5}$ lezen $\left._{6}\right)=$

E : natural language \mathcal{H} : set of dependency trees

$$
\begin{aligned}
& \text { parsing : } E \rightarrow \mathcal{H} \\
& \text { parsing }(e)=\operatorname{proj}(\underset{\operatorname{str}(\operatorname{proj}(d))=e}{\operatorname{argmax}} P(d \mid(G, p))) \\
& \text { where } \\
& \text { - }(G, p) \text { : probabilistic lexicalized LCFRS } \\
& \quad\left(D_{G}: \text { set of proof trees of } G\right) \\
& \text { - } \operatorname{proj}: D_{G} \rightarrow \mathcal{H} \\
& \text { - } P\left(r_{1} \ldots r_{n} \mid(G, p)\right)=p\left(r_{1}\right) \cdot \ldots \cdot p\left(r_{n}\right)
\end{aligned}
$$

Outline

- Syntax of natural language sentences
- hybrid trees: phrase structure trees, dependency trees
- Ambiguity and parsing
- probabilistic language models
- A particular "simple and revealing grammar" model
- probabilistic LCFRS
- Probabilistic hybrid grammars

grammar formalisms	phrase structure trees		dependency		parsing compl.
	cont.	discont.	proj.	non-proj.	

$\substack{\text { grammar } \\ \text { formalisms }}$	phrase structure trees		dependency trees		parsing compl.
	cont.	discont.	proj.	non-proj.	
REG/HMM	-	-	-	-	$\mathcal{O}(n)$

grammar formalisms	phrase structure trees		dependency trees		parsing compl.
	cont.	discont.	proj.	non-proj.	
REG/HMM	-	-	-	-	$\mathcal{O}(n)$
CFG	\mathbf{x}	-	\mathbf{x}	-	$\mathcal{O}\left(n^{3}\right) \quad(C N F)$

grammar formalisms	phrase structure trees		dependency trees		parsing compl.
REG/HMM	-	-	-	-	$\mathcal{O}(n)$
CFG	x	-	x	-	$\mathcal{O}\left(n^{3}\right)(\mathrm{CNF})$
LCFRS	x	x	x	x	$\mathcal{O}\left(n^{3 \cdot f a n o u t(G)}\right)$

trade-off: "richness" of syntactic structures versus parsing complexity

grammar formalisms	phrase structure trees		dependency trees		parsing compl.
	cont.	discont.	proj.	non-proj.	
REG/HMM	-	-	-	-	$\mathcal{O}(n)$
CFG	\mathbf{x}	-	\mathbf{x}	-	$\mathcal{O}\left(n^{3}\right)(C N F)$
LCFRS	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	$\mathcal{O}\left(n^{3 \cdot \text { fanout(G) })(\text { binar. })}\right.$

trade-off: "richness" of syntactic structures versus parsing complexity

Idea:
split generation of syntactic structures from generation of strings

Outline

- ...
- Probabilistic hybrid grammars
[Nederhof, HV 14]
Hybrid Grammars for Discontinuous Parsing.
COLING 2014
[Gebhardt, Nederhof, HV 17]
Hybrid grammars for parsing of discontinuous phrase structures and non-projective dependency structures, accepted for publication 2016, Computational Linguistics.
hybrid tree:

hybrid tree:

hybrid tree:

string grammar
+ tree grammar
hybrid tree:

hybrid tree:

hybrid grammar $=$ string grammar + synchronization + tree grammar
hybrid grammar $=$ string grammar + synchronization + tree grammar
string grammar:
- regular grammars / finite-state automata
- context-free grammars
- macro grammars [Fischer 68]
- linear context-free rewriting systems (LCFRS)
tree grammar:
- regular tree grammars [Brainerd 69]
- context-free tree grammars [Rounds 70; Engelfriet, Schmidt 77]
- simple definite clause programs (sDCP)
[Deransart, Maluszynski 85]
hybrid grammar $=$ string grammar + synchronization + tree grammar
string grammar:
- regular grammars / finite-state automata
- context-free grammars
- macro grammars [Fischer 68]
- linear context-free rewriting systems (LCFRS)
tree grammar:
- regular tree grammars [Brainerd 69]
- context-free tree grammars [Rounds 70; Engelfriet, Schmidt 77]
- simple definite clause programs (sDCP)
[Deransart, Maluszynski 85]
(LCFRS,sDCP)-hybrid grammars \rightsquigarrow hybrid grammars

Outline

- Probabilistic hybrid grammars
- simple definite clause programs (sDCP)
- (LCFRS,sDCP)-hybrid grammars
- parsing with hybrid grammars
- how to obtain a hybrid grammar for E ?
- experiments
simple definite clause programs (sDCPs):
\approx attribute grammars
[Knuth 68]
$S \quad \rightarrow \quad A \quad C$
simple definite clause programs (sDCPs):
\approx attribute grammars [Knuth 68]

simple definite clause programs (sDCPs):
\approx attribute grammars [Knuth 68]

simple definite clause programs (sDCPs):
\approx attribute grammars [Knuth 68]

simple definite clause programs (sDCPs):
\approx attribute grammars
[Knuth 68]
$S z_{1} \quad \rightarrow z_{2} A z_{1} \quad C\left[z_{2}\right.$
simple definite clause programs (sDCPs):
\approx attribute grammars [Knuth 68]

$$
\begin{aligned}
& S z_{1} \quad \rightarrow z_{2} A\left[z _ { 1 } \quad C \left[z_{2}\right.\right. \\
& {\left[\begin{array}{ll}
z_{1} & A \begin{array}{cc}
\prime \mathbf{h} \\
z_{2} & z_{1} \\
\hline
\end{array}
\end{array} \rightarrow \quad B \underline{z_{2}}\right.}
\end{aligned}
$$

simple definite clause programs (sDCPs):

$$
\begin{aligned}
& S z_{1} \quad \rightarrow z_{2} A z_{1} \quad C z_{2} \\
& z_{1} A \begin{array}{c}
z_{1} \\
\begin{array}{cc}
\prime & \\
z_{2} & z_{1} \\
\hline
\end{array}
\end{array} \rightarrow \quad B \underline{z_{2}} \\
& C\left[\begin{array}{c}
\boldsymbol{\ell} \\
z_{1}
\end{array}\right] \quad \rightarrow \quad D \square Z_{1} \\
& \begin{array}{l}
B \mathbf{P} \rightarrow \varepsilon \\
D \mathbf{M} \rightarrow \varepsilon
\end{array}
\end{aligned}
$$

simple definite clause programs (sDCPs):

$$
\begin{aligned}
& S z_{1} \quad \rightarrow \quad z_{2} A \left\lvert\, z_{1} \quad C\left[\begin{array}{l}
z_{2} \\
\hline
\end{array}\right.\right. \\
& \left.\underline{z}_{1} A \begin{array}{c}
\mathbf{z}^{\prime} \\
z_{2} \\
z_{1} \\
z_{1}
\end{array}\right] \quad B \quad B \underline{z_{2}} \quad \rightarrow \varepsilon \\
& C \begin{array}{c}
\boldsymbol{\ell} \\
z_{1} \\
z_{1}
\end{array} \\
& \rightarrow \quad D\left[Z_{1}\right. \\
& D \mathbf{M} \rightarrow \varepsilon
\end{aligned}
$$

simple definite clause programs (sDCPs):

$$
\begin{aligned}
& \begin{array}{llll|}
\hline S\left[\begin{array}{ll}
z_{1} & \rightarrow \\
z_{2} & A\left[z_{1}\right. \\
& C\left[z_{2}\right. \\
\hline
\end{array}\right)
\end{array} \\
& z_{1} A \underset{z_{1}}{\prime} \begin{array}{c}
\mathbf{h}_{1} \\
z_{2} \\
z_{1}
\end{array} \rightarrow \quad B \underline{z_{2}} \quad B \mathbf{P} \rightarrow \varepsilon \\
& \left.C \begin{array}{c}
\boldsymbol{\ell} \\
z_{1}
\end{array}\right] \quad \rightarrow \quad D \not z_{1} \\
& D \mathbf{M} \rightarrow \varepsilon
\end{aligned}
$$

simple definite clause programs (sDCPs):

$$
\begin{aligned}
& \begin{array}{llll|}
\hline S\left[z_{1}\right. & \rightarrow & z_{2} & A\left[z_{1}\right. \\
& C\left[z_{2}\right. \\
\hline
\end{array} \\
& z_{1} A \underset{z_{1}}{\prime} \begin{array}{c}
\mathbf{h}_{1} \\
z_{2} \\
z_{1}
\end{array} \rightarrow \quad B \underline{z_{2}} \quad B \mathbf{P} \rightarrow \varepsilon \\
& \left.C \begin{array}{c}
\boldsymbol{\ell} \\
z_{1}
\end{array}\right] \quad \rightarrow \quad D \not z_{1} \\
& D \mathbf{M} \rightarrow \varepsilon
\end{aligned}
$$

simple definite clause programs (sDCPs):

$$
\begin{aligned}
& \begin{array}{llll|}
\hline S\left[z_{1}\right. & \rightarrow & z_{2} & A\left[z_{1}\right. \\
& C\left[z_{2}\right. \\
\hline
\end{array} \\
& z_{1} A \underset{z_{1}}{\prime} \begin{array}{c}
\mathbf{h}_{1} \\
z_{2} \\
z_{1}
\end{array} \rightarrow \quad B \underline{z_{2}} \quad B \mathbf{P} \rightarrow \varepsilon \\
& \left.C \begin{array}{c}
\boldsymbol{\ell} \\
z_{1}
\end{array}\right] \quad \rightarrow \quad D\left[\begin{array}{l}
Z_{1} \\
\hline
\end{array}\right. \\
& D \mathbf{M} \rightarrow \varepsilon
\end{aligned}
$$

simple definite clause programs (sDCPs):

$$
\begin{aligned}
& \begin{array}{llll|}
\hline S\left[z_{1}\right. & \rightarrow & z_{2} & A\left[z_{1}\right. \\
\hline
\end{array} \\
& z_{1} A \underset{z_{1}}{\prime} \begin{array}{c}
\mathbf{h}_{1} \\
z_{2} \\
z_{1}
\end{array} \rightarrow \quad B \underline{z_{2}} \quad B \mathbf{P} \rightarrow \varepsilon \\
& \left.C \begin{array}{c}
\boldsymbol{\ell} \\
z_{1}
\end{array}\right] \quad \rightarrow \quad D\left[\begin{array}{l}
Z_{1} \\
\hline
\end{array}\right. \\
& D \mathbf{M} \rightarrow \varepsilon
\end{aligned}
$$

simple definite clause programs (sDCPs):

$$
\begin{aligned}
& S z_{1} \quad \rightarrow z_{2} A z_{1} \quad C z_{2} \\
& z_{1} A \begin{array}{c}
z_{1} \\
\hline z_{1} \\
z_{2} \\
z_{1}
\end{array} \rightarrow \quad B \underline{z_{2}} \quad B \boldsymbol{P} \rightarrow \varepsilon \\
& \left.C \begin{array}{c}
\boldsymbol{\ell} \\
z_{1}
\end{array}\right] \quad \rightarrow \quad D\left[\begin{array}{l}
z_{1} \\
\hline
\end{array}\right. \\
& D \mathbf{M} \rightarrow \varepsilon
\end{aligned}
$$

simple definite clause programs (sDCPs):

$$
\begin{aligned}
& S z_{1} \quad \rightarrow z_{2} A\left[z_{1} \quad C z_{2}\right. \\
& \left.\begin{array}{|l|c|c|}
\hline z_{1} & A & \begin{array}{c}
\mathbf{h} \\
z_{1} \\
z_{2}
\end{array} \\
z_{1}
\end{array}\right] \rightarrow B \underline{z_{2}} \\
& C \begin{array}{c}
\boldsymbol{\ell} \\
z_{1} \\
z_{1}
\end{array} \quad \rightarrow \quad D \boxed{z_{1}} \\
& B \mathbf{P} \rightarrow \varepsilon \\
& D \mathbf{M} \rightarrow \varepsilon
\end{aligned}
$$

simple definite clause programs (sDCPs):

$$
\begin{aligned}
& S z_{1} \quad \rightarrow z_{2} A\left[z_{1} \quad C z_{2}\right. \\
& \begin{array}{|l|c|c|}
\hline z_{1} & A & \begin{array}{cc}
\mathbf{h} & \\
z_{2} & z_{1}
\end{array} \\
& & \\
\hline
\end{array} \\
& C \begin{array}{c}
\boldsymbol{\ell} \\
z_{1} \\
z_{1}
\end{array} \quad \rightarrow \quad D \boxed{z_{1}} \\
& B \mathbf{P} \rightarrow \varepsilon \\
& D \mathbf{M} \rightarrow \varepsilon
\end{aligned}
$$

simple definite clause programs (sDCPs):

$$
\begin{aligned}
& S z_{1} \quad \rightarrow \quad z_{2} A \mid z_{1} \quad C\left[z_{2}\right.
\end{aligned}
$$

\approx attribute grammars
[Knuth 68]

$$
\Rightarrow \quad B \mathbf{P}
$$

simple definite clause programs (sDCPs):

$$
\begin{aligned}
& S z_{1} \quad \rightarrow z_{2} A z_{1} \quad C z_{2} \\
& z_{1} A \begin{array}{c}
z_{1} \\
\hline z_{1} \\
z_{2} \\
z_{1}
\end{array} \rightarrow \quad B \underline{z_{2}} \quad B \boldsymbol{P} \rightarrow \varepsilon \\
& \left.C \begin{array}{c}
\boldsymbol{\ell} \\
z_{1}
\end{array}\right] \quad \rightarrow \quad D\left[\begin{array}{l}
Z_{1} \\
\hline
\end{array}\right. \\
& D \mathbf{M} \rightarrow \varepsilon
\end{aligned}
$$

$$
\Rightarrow \quad B \mathbf{P}
$$

simple definite clause programs (sDCPs):

$$
\begin{aligned}
& S\left[z_{1} \rightarrow z_{2} A \mid z_{1} \quad C\left[z_{2}\right.\right.
\end{aligned}
$$

C| $\boldsymbol{\ell}$ |
| :---: |
| \boldsymbol{l} |
| \mathbf{M} |

simple definite clause programs (sDCPs):

$$
\begin{aligned}
& S z_{1} \rightarrow z_{2} A z_{1} \quad C\left[z_{2}\right. \\
& z_{1} A \begin{array}{cc}
z_{1} & \mathbf{h} \\
z_{2} & z_{1} \\
\hline \boldsymbol{l}
\end{array} \rightarrow \quad B \underline{z_{2}} \\
& \left.C\left[\begin{array}{c}
\boldsymbol{\ell} \\
z_{1}
\end{array}\right] \quad \rightarrow \quad D \right\rvert\, Z_{1} \\
& D \mathbf{M} \rightarrow \varepsilon
\end{aligned}
$$

simple definite clause programs (sDCPs):

$$
\begin{aligned}
& S\left[z_{1} \rightarrow z_{2} A \mid z_{1} \quad C\left[z_{2}\right.\right.
\end{aligned}
$$

simple definite clause programs (sDCPs):

$$
\begin{aligned}
& S z_{1} \quad \rightarrow z_{2} A z_{1} \quad C z_{2} \\
& \text { [} \begin{array}{ll}
z_{1} & A \begin{array}{c}
\mathbf{h}^{\prime} \\
z_{2} \\
z_{1}
\end{array} \\
z_{1}
\end{array} \rightarrow \quad B \underline{z_{2}} \\
& C\left[\begin{array}{c}
\boldsymbol{\ell} \\
z_{1}
\end{array}\right] \quad \rightarrow \quad D \boxed{z_{1}}
\end{aligned}
$$

simple definite clause programs (sDCPs):

$$
\begin{aligned}
& S\left[z_{1} \rightarrow z_{2} A \mid z_{1} \quad C\left[z_{2}\right.\right.
\end{aligned}
$$

$C \begin{gathered}\boldsymbol{\ell} \\ \mathbf{1} \\ \mathbf{M}\end{gathered}$
$D \mathbf{M}$
simple definite clause programs (sDCPs):

$$
\begin{aligned}
& S z_{1} \quad \rightarrow z_{2} A z_{1} \quad C z_{2} \\
& z_{1} A \begin{array}{cc}
z_{1} & \begin{array}{c}
\mathbf{h} \\
z_{2} \\
z_{1}
\end{array}
\end{array} \rightarrow \quad B \underline{z_{2}} \\
& C\left[\begin{array}{c}
\boldsymbol{\ell} \\
z_{1}
\end{array}\right] \quad \rightarrow \quad D \underline{Z_{1}}
\end{aligned}
$$

$D \mathbf{M}$
simple definite clause programs (sDCPs):
\approx attribute grammars [Knuth 68]

$$
\begin{array}{rlr}
S_{\mathbf{P}^{\prime \prime}} \begin{array}{ll}
\mathbf{h} \\
& \\
& \boldsymbol{\ell}^{4} \\
\mathbf{M}
\end{array} & & D \longdiv { \mathbf { M } } \\
& \Rightarrow & \varepsilon
\end{array}
$$

$$
\begin{aligned}
& S z_{1} \rightarrow z_{2} A z_{1} \quad C\left[z_{2}\right. \\
& {\left[\begin{array}{ll}
z_{1} & A \begin{array}{cc}
\mathbf{h}^{\prime} \\
z_{2} & z_{1} \\
\hline
\end{array}
\end{array} \rightarrow \quad B \underline{z_{2}}\right.} \\
& C\left[\begin{array}{c}
\boldsymbol{\ell} \\
z_{1}
\end{array}\right] \quad \rightarrow \quad D \not Z_{1}
\end{aligned}
$$

(LCFRS,sDCP)-hybrid grammar:

(LCFRS,sDCP)-hybrid grammar:

$S\left[z_{1}\right.$	$\rightarrow\left\|z_{2} A\right\| z_{1}$	$C z_{2}$	
$S\left(x_{1} x_{3}\right.$	$\left.x_{2} x_{4}\right)$	\rightarrow	$A\left(x_{1}, x_{2}\right)$
	$C\left(x_{3}, x_{4}\right)$		

(LCFRS,sDCP)-hybrid grammar:

$S_{1} z_{1}$	$\rightarrow z_{2} A,{ }_{1}$	${ }_{1} z_{2}$
	,	
$S\left(\begin{array}{llll}x_{1} & x_{3} & x_{2} & x_{4}\end{array}\right)$	$\rightarrow \quad \dot{A}\left(x_{1}\right.$	$C\left(x_{3}, x_{4}\right)$

(LCFRS,sDCP)-hybrid grammar:

$S_{1} z_{1}$	$\rightarrow z_{2} A, z_{1}$	${ }_{1} z_{2}$
$\dot{S}\left(\begin{array}{lllll}x_{1} & x_{3} & x_{2} & x_{4}\end{array}\right)$	$\rightarrow \quad \dot{A}\left(x_{1}\right.$	$\dot{C}\left(x_{3}, x_{4}\right)$

$z_{1} A$	\mathbf{h}		
	z_{2}	z_{1}	
		B	B
$A\left(x_{1}, \mathbf{h}\right)$		\rightarrow	$B\left(x_{1}\right)$

(LCFRS,sDCP)-hybrid grammar:

$S_{1} z_{1}$	$\rightarrow z_{2} A, z_{1}$	${ }_{1} z_{2}$
$\dot{S}\left(\begin{array}{lllll}x_{1} & x_{3} & x_{2} & x_{4}\end{array}\right)$	$\rightarrow \quad \dot{A}(x$	$\dot{C}\left(x_{3}, x_{4}\right)$

$z_{1} A$	h	\mathbf{h}		
	z_{2}	z_{1}		
		B	z_{2}	
$A\left(x_{1}, \mathbf{h}\right)$				$B\left(x_{1}\right)$

(LCFRS,sDCP)-hybrid grammar:

(LCFRS,sDCP)-hybrid grammar:

$S_{1} Z_{1}$	$\rightarrow z_{2} A$	${ }_{1}$
	,	
$S(x$	$\rightarrow \quad A\left(x_{1}\right.$	$C\left(x_{3}, x_{4}\right)$

(LCFRS,sDCP)-hybrid grammar:

$S_{1} z_{1}$	$\rightarrow z_{2} A, z_{1}$	${ }_{1} z_{2}$
$\dot{S}\left(\begin{array}{lllll}x_{1} & x_{3} & x_{2} & x_{4}\end{array}\right)$	$\rightarrow \quad \dot{A}(x$	$\dot{C}\left(x_{3}, x_{4}\right)$

(LCFRS,sDCP)-hybrid grammar:

$S Z_{1}$	$\rightarrow Z_{2} A Z_{1}$	$C\left(Z_{2}\right.$	
\vdots	\vdots		
$S\left(x_{1} x_{3} x_{2} x_{4}\right)$	\rightarrow	$A\left(x_{1}, x_{2}\right)$	$C\left(x_{3}, x_{4}\right)$

C
\vdots
C
C
$(\mathbf{M}, \boldsymbol{\ell})$
(LCFRS,sDCP)-hybrid grammar:

$S, Z_{1} \quad \rightarrow$	$\rightarrow z_{2} A, z_{1}$	$C_{1} z_{2}$
$\dot{S}\left(\begin{array}{llll}x_{1} & x_{3} & x_{2} & x_{4}\end{array}\right)$	$\rightarrow \quad \dot{A}\left(x_{1}\right.$	$\dot{C}\left(x_{3}, x_{4}\right)$

(LCFRS,sDCP)-hybrid grammar:

(LCFRS,sDCP)-hybrid grammar:

$\begin{array}{cc}C & \boldsymbol{\ell} \\ 1 & \\ \mathbf{M} & \vdots \\ \vdots & \vdots \\ \vdots \\ C & (\mathbf{M}, \boldsymbol{\ell})\end{array}$
(LCFRS,sDCP)-hybrid grammar:

$$
\begin{array}{cc}
C & \boldsymbol{\ell} \\
1 & \\
\mathbf{M} & \ddots \\
\vdots & \vdots \\
C & (\mathbf{M}, \boldsymbol{\ell})
\end{array}
$$

(LCFRS,sDCP)-hybrid grammar:

$$
\begin{array}{|cccc}
z_{1} A & h & \mathbf{h} \\
& z_{2} & z_{1} & ; \\
& \rightarrow & B & z_{2} \\
A\left(x_{1}, \mathbf{h}\right) & & \rightarrow & B\left(x_{1}\right) \\
\hline
\end{array}
$$

(LCFRS,sDCP)-hybrid grammar:

(LCFRS,sDCP)-hybrid grammar:

(LCFRS,sDCP)-hybrid grammar:

(LCFRS,sDCP)-hybrid grammar:

(LCFRS,sDCP)-hybrid grammar:

(LCFRS,sDCP)-hybrid grammar:

(LCFRS,sDCP)-hybrid grammar:

$$
\begin{array}{|cc|}
\hline D \mathbf{M} & \rightarrow \varepsilon \\
\vdots & \\
D(\mathbf{M}) & \rightarrow \varepsilon \\
\hline
\end{array}
$$

(LCFRS,sDCP)-hybrid grammar:

$$
\begin{array}{|cc|}
\hline D \widehat{\mathbf{M}} & \rightarrow \varepsilon \\
1 & \\
D(\mathbf{M}) & \rightarrow \varepsilon \\
\hline
\end{array}
$$

E: natural language \mathcal{H} : set of hybrid trees

$$
\begin{aligned}
& \text { parsing : } E \rightarrow \mathcal{H} \\
& \text { parsing }(e)=\operatorname{proj}\left(\operatorname{argmax}_{\operatorname{str}(\operatorname{proj}(d))=e}^{d \in D_{G}:} P(d \mid(G, p))\right) \\
& \text { where } \\
& \text { - }(G, p) \text { : probabilistic hybrid grammar } \\
& \quad\left(D_{G}: \text { set of proof trees of } G\right) \\
& \text { - } \operatorname{proj}: D_{G} \rightarrow \mathcal{H} \\
& \text { - } P\left(r_{1} \ldots r_{n} \mid(G, p)\right)=p\left(r_{1}\right) \cdot \ldots \cdot p\left(r_{n}\right)
\end{aligned}
$$

parsing with hybrid grammar G :
sentence $w=\mathbf{J a n}_{1}$ Piet $_{2}$ Marie $_{3}$ zag $_{4}$ helpen $_{5}$ lezen $_{6}$

```
1. consider LCFRS proj
parsing of w with proj
    proof tree d for "w 
3. enrich proof tree d by sDCP-part of used rules
    => proof tree }\mp@subsup{d}{}{\prime}\mathrm{ for " }h\inL(G)\mathrm{ with }\operatorname{str}(h)=w
4. project proof tree d' to dependency tree
```

parsing with hybrid grammar G :
sentence $w=\mathbf{J a n}_{1}$ Piet $_{2}$ Marie $_{3}$ zag $_{4}$ helpen $_{5}$ lezen $_{6}$

1. consider LCFRS $\operatorname{proj}_{\mathrm{LCFRS}}(G)$
2. parsing of w with $\operatorname{proj}_{\mathrm{LCFRS}}(G)$
$\quad \Rightarrow$ proof tree d for $" w \in L\left(\operatorname{proj}_{\mathrm{LCFRS}}(G)\right) "$
3. enrich proof tree d by sDCP-part of used rules
\Rightarrow proof tree d^{\prime} for " $h \in L(G)$ with $\operatorname{str}(h)=w "$
4. project proof tree d^{\prime} to dependency tree

parsing with hybrid grammar G :
sentence $w=\mathbf{J a n}_{1}$ Piet $_{2}$ Marie $_{3}$ zag $_{4}$ helpen $_{5}$ lezen $_{6}$
5. consider LCFRS $\operatorname{proj}_{\mathrm{LCFRS}}(G)$
6. parsing of w with $\operatorname{proj}_{\mathrm{LCFRS}}(G)$

$$
\Rightarrow \text { proof tree } d \text { for " } w \in L\left(\operatorname{proj}_{\text {LCFRS }}(G)\right) \text { " }
$$

3. enrich proof tree d by sDCP-part of used rules \Rightarrow proof tree d^{\prime} for " $h \in L(G)$ with $\operatorname{str}(h)=w$ "
4. project proof tree d" to dependency tree

parsing with hybrid grammar G :
sentence $w=\mathbf{J a n}_{1}$ Piet $_{2}$ Marie $_{3}$ zag $_{4}$ helpen $_{5}$ lezen $_{6}$
5. consider LCFRS $\operatorname{proj}_{\mathrm{LCFRS}}(G)$
6. parsing of w with $\operatorname{proj}_{\mathrm{LCFRS}}(G)$

$$
\Rightarrow \text { proof tree } d \text { for " } w \in L\left(\operatorname{proj}_{\text {LCFRS }}(G)\right) \text { " }
$$

3. enrich proof tree d by sDCP-part of used rules

$$
\Rightarrow \text { proof tree } d^{\prime} \text { for " } h \in L(G) \text { with } \operatorname{str}(h)=w "
$$

4. project proof tree d^{\prime} to dependency tree

parsing with hybrid grammar G :
sentence $w=\mathbf{J a n}_{1}$ Piet $_{2}$ Marie $_{3}$ zag $_{4}$ helpen $_{5}$ lezen $_{6}$
5. consider LCFRS $\operatorname{proj}_{\mathrm{LCFRS}}(G)$
6. parsing of w with $\operatorname{proj}_{\mathrm{LCFRS}}(G)$

$$
\Rightarrow \text { proof tree } d \text { for " } w \in L\left(\operatorname{proj}_{\text {LCFRS }}(G)\right) \text { " }
$$

3. enrich proof tree d by sDCP-part of used rules

$$
\Rightarrow \text { proof tree } d^{\prime} \text { for " } h \in L(G) \text { with } \operatorname{str}(h)=w \text { " }
$$

4. project proof tree d^{\prime} to dependency tree

How to obtain a hybrid grammar for E ?

- grammar induction from corpus of hybrid trees
[Nederhof, HV 141, 「Gebhardt, Nederhof HV 171
- training of probabilities
[Drewes, Gebhardt. HV 16]
EM-training for weighted aligned hypergraph bimorphisms. ACL Workshop StatFSM 2016

How to obtain a hybrid grammar for E ?

- grammar induction from corpus of hybrid trees
[Nederhof, HV 14], [Gebhardt, Nederhof, HV 17]
- training of probabilities
[Drewes, Gebhardt, HV 16]
EM-training for weighted aligned hypergraph bimorphisms. ACL Workshop StatFSM 2016

How to obtain a hybrid grammar for E ?

- grammar induction from corpus of hybrid trees
[Nederhof, HV 14], [Gebhardt, Nederhof, HV 17]
- training of probabilities
[Drewes, Gebhardt, HV 16]
EM-training for weighted aligned hypergraph bimorphisms.
ACL Workshop StatFSM 2016

How to obtain a hybrid grammar for E ?

- grammar induction from corpus of hybrid trees [Nederhof, HV 14], [Gebhardt, Nederhof, HV 17]
- training of probabilities
[Drewes, Gebhardt, HV 16]
EM-training for weighted aligned hypergraph bimorphisms.
ACL Workshop StatFSM 2016
corpus of dependency trees for language E :

(corpus $=$ large, finite set)
corpus of dependency trees for language E :

(corpus $=$ large, finite set $)$
corpora for dependency trees
- Prague Dependency Treebank (Czech, 26k sentences)
- Slovene Dependency Treebank (Slovene, 30k words)
- Danish Dependency Treebank (Danish, 5k sentence)
- Talbanken05 (Swedish, 30k words)
- Metu-Sabancı treebank (Turkish, 7k sentences)
corpus of dependency trees for language E :

(corpus $=$ large, finite set)
corpus of dependency trees for language E :

$$
\text { (corpus }=\text { large, finite set) }
$$

goal:
construct hybrid grammar G such that $C \subsetneq L(G) \subsetneq \mathcal{H}$
" G generalizes C "
corpus of dependency trees for language E :

$$
\text { (corpus }=\text { large, finite set) }
$$

goal:
construct hybrid grammar G such that $C \subsetneq L(G) \subsetneq \mathcal{H}$
" G generalizes C "
transformation $C \rightsquigarrow G$ is called grammar induction
grammar induction from one hybrid tree:
hybrid tree
$h=(\xi, \cup, \preceq)$
grammar induction from one hybrid tree:

> hybrid tree
> $h=(\xi, U, \preceq)$
hybrid
grammar G

$$
L(G)=\{h\}
$$

grammar induction from one hybrid tree:

$L(G)=\{h\}$
parsing of $\operatorname{str}(h)$ according to π
hybrid tree $h=(\xi, \cup, \preceq)$

hybrid tree $h=(\xi, \cup, \preceq)$ recursive partitioning π of $\{1, \ldots,|U|\}$

fanout $(\pi)=\max _{p \in \operatorname{pos}(\pi)}$ (number of intervals in label of π at p)
hybrid tree $h=(\xi, U, \preceq)$ recursive partitioning π of $\{1, \ldots,|U|\}$

- extracted from h
fanout $(\pi)=\max _{p \in \operatorname{pos}(\pi)}$ (number of intervals in label of π at p)
hybrid tree $h=(\xi, \cup, \preceq)$ recursive partitioning π of $\{1, \ldots,|U|\}$

- extracted from h
- left-/right-branching
fanout $(\pi)=\max _{p \in \operatorname{pos}(\pi)}$ (number of intervals in label of π at p)
hybrid tree $h=(\xi, \cup, \preceq)$

- extracted from h
- left-/right-branching
fanout $(\pi)=\max _{p \in \operatorname{pos}(\pi)}$ (number of intervals in label of π at $\left.p\right)$
hybrid tree $h=(\xi, \cup, \preceq)$

- extracted from h
- left-/right-branching
fanout $(\pi)=\max _{p \in \operatorname{pos}(\pi)}$ (number of intervals in label of π at $\left.p\right)$
grammar induction from one hybrid tree:

$L(G)=\{h\}$
parsing of $\operatorname{str}(h)$ according to π
induction of LCFRS G_{1} :

induction of LCFRS G_{1} :

$\{1,2,4\}($ Piet Marie, Iezen $) \quad \Rightarrow^{*} \quad \varepsilon$
induction of LCFRS G_{1} :

induction of LCFRS G_{1} :

$\{2\}$ (Marie) $\rightarrow \varepsilon$
induction of LCFRS G_{1} :

$\{2\}$ (Marie) $\rightarrow \varepsilon \quad\{4\}$ (lezen) $\rightarrow \varepsilon$
induction of LCFRS G_{1} :

$\{2\}$ (Marie) $\rightarrow \varepsilon \quad\{4\}$ (lezen) $\rightarrow \varepsilon \quad\{1\}$ (Piet) $\rightarrow \varepsilon$
induction of LCFRS G_{1} :

$\{2\}$ (Marie) $\rightarrow \varepsilon \quad\{4\}$ (lezen) $\rightarrow \varepsilon \quad\{1\}$ (Piet) $\rightarrow \varepsilon \quad\{3\}$ (helpen) $\rightarrow \varepsilon$
induction of LCFRS G_{1} :

$\{2\}$ (Marie) $\rightarrow \varepsilon \quad\{4\}$ (lezen) $\rightarrow \varepsilon \quad\{1\}$ (Piet) $\rightarrow \varepsilon \quad\{3\}$ (helpen) $\rightarrow \varepsilon$
induction of LCFRS G_{1} :

$\{2\}$ (Marie) $\rightarrow \varepsilon \quad\{4\}$ (lezen) $\rightarrow \varepsilon \quad\{1\}$ (Piet) $\rightarrow \varepsilon \quad\{3\}$ (helpen) $\rightarrow \varepsilon$
induction of LCFRS G_{1} :

$\{2\}$ (Marie) $\rightarrow \varepsilon \quad\{4\}$ (lezen) $\rightarrow \varepsilon \quad\{1\}$ (Piet) $\rightarrow \varepsilon \quad\{3\}$ (helpen) $\rightarrow \varepsilon$ $\{2,4\}\left(x_{1}, x_{2}\right) \rightarrow\{2\}\left(x_{1}\right)\{4\}\left(x_{2}\right)$
induction of LCFRS G_{1} :

$\{2\}$ (Marie) $\rightarrow \varepsilon \quad\{4\}$ (lezen) $\rightarrow \varepsilon \quad\{1\}$ (Piet) $\rightarrow \varepsilon \quad\{3\}$ (helpen) $\rightarrow \varepsilon$ $\{2,4\}\left(x_{1}, x_{2}\right) \rightarrow\{2\}\left(x_{1}\right)\{4\}\left(x_{2}\right)$
induction of LCFRS G_{1} :

$\{2\}$ (Marie) $\rightarrow \varepsilon \quad\{4\}$ (lezen) $\rightarrow \varepsilon \quad\{1\}$ (Piet) $\rightarrow \varepsilon \quad\{3\}$ (helpen) $\rightarrow \varepsilon$ $\{2,4\}\left(x_{1}, x_{2}\right) \rightarrow\{2\}\left(x_{1}\right)\{4\}\left(x_{2}\right)$
induction of LCFRS G_{1} :
hybrid
tree h :
\ldots Piet $_{1}$ Marie $_{2}$ helpen $_{3}$ lezen $_{4} \ldots$

$\{2\}$ (Marie) $\rightarrow \varepsilon \quad\{4\}$ (lezen) $\rightarrow \varepsilon \quad\{1\}$ (Piet) $\rightarrow \varepsilon \quad\{3\}$ (helpen) $\rightarrow \varepsilon$ $\{2,4\}\left(x_{1}, x_{2}\right) \rightarrow\{2\}\left(x_{1}\right)\{4\}\left(x_{2}\right)$
$\{1,2,4\}\left(x_{3} x_{1}, x_{2}\right) \rightarrow\{2,4\}\left(x_{1}, x_{2}\right)\{1\}\left(x_{3}\right)$
induction of LCFRS G_{1} :

$\{2\}$ (Marie) $\rightarrow \varepsilon \quad\{4\}$ (lezen) $\rightarrow \varepsilon \quad\{1\}$ (Piet) $\rightarrow \varepsilon \quad\{3\}$ (helpen) $\rightarrow \varepsilon$ $\{2,4\}\left(x_{1}, x_{2}\right) \rightarrow\{2\}\left(x_{1}\right)\{4\}\left(x_{2}\right)$
$\{1,2,4\}\left(x_{3} x_{1}, x_{2}\right) \rightarrow\{2,4\}\left(x_{1}, x_{2}\right)\{1\}\left(x_{3}\right)$
induction of LCFRS G_{1} :

$\{2\}$ (Marie) $\rightarrow \varepsilon \quad\{4\}$ (lezen) $\rightarrow \varepsilon \quad\{1\}$ (Piet) $\rightarrow \varepsilon \quad\{3\}$ (helpen) $\rightarrow \varepsilon$ $\{2,4\}\left(x_{1}, x_{2}\right) \rightarrow\{2\}\left(x_{1}\right)\{4\}\left(x_{2}\right)$
$\{1,2,4\}\left(x_{3} x_{1}, x_{2}\right) \rightarrow\{2,4\}\left(x_{1}, x_{2}\right)\{1\}\left(x_{3}\right)$
induction of LCFRS G_{1} :
hybrid
tree h :

\ldots Piet $_{1}$ Marie $_{2}$ helpen $_{3}$ lezen $_{4}$

$\{2\}$ (Marie) $\rightarrow \varepsilon \quad\{4\}$ (lezen) $\rightarrow \varepsilon \quad\{1\}$ (Piet) $\rightarrow \varepsilon \quad\{3\}$ (helpen) $\rightarrow \varepsilon$ $\{2,4\}\left(x_{1}, x_{2}\right) \rightarrow\{2\}\left(x_{1}\right)\{4\}\left(x_{2}\right)$
$\{1,2,4\}\left(x_{3} x_{1}, x_{2}\right) \rightarrow\{2,4\}\left(x_{1}, x_{2}\right)\{1\}\left(x_{3}\right)$
$\{1,2,3,4\}\left(x_{1} x_{3} x_{2}\right) \rightarrow\{1,2,4\}\left(x_{1}, x_{2}\right)\{3\}\left(x_{3}\right)$
induction of LCFRS G_{1} :
hybrid tree h :

\ldots Piet $_{1}$ Marie $_{2}$ helpen lezen $_{4}$

$\{2\}$ (Marie) $\rightarrow \varepsilon \quad\{4\}$ (lezen) $\rightarrow \varepsilon \quad\{1\}$ (Piet) $\rightarrow \varepsilon \quad\{3\}$ (helpen) $\rightarrow \varepsilon$ $\{2,4\}\left(x_{1}, x_{2}\right) \rightarrow\{2\}\left(x_{1}\right)\{4\}\left(x_{2}\right)$
$\{1,2,4\}\left(x_{3} x_{1}, x_{2}\right) \rightarrow\{2,4\}\left(x_{1}, x_{2}\right)\{1\}\left(x_{3}\right)$
$\{1,2,3,4\}\left(x_{1} x_{3} x_{2}\right) \rightarrow\{1,2,4\}\left(x_{1}, x_{2}\right)\{3\}\left(x_{3}\right)$

$$
\text { fanout }\left(G_{1}\right)=\operatorname{fanout}(\pi)
$$

induction of sDCP G_{2} :

induction of sDCP G_{2} :

induction of sDCP G_{2} :

grammar induction from one hybrid tree:

$L(G)=\{h\}$
parsing of $\operatorname{str}(h)$ according to π
synchronization of nonterminals and terminals:
sDCP-rule:
$\{2\} \rightarrow \rightarrow \varepsilon$

LCFRS-rule:
$\{2\}(\mathrm{M}) \rightarrow \varepsilon$
synchronization of nonterminals and terminals:

synchronization of nonterminals and terminals:

synchronization of nonterminals and terminals:

	$\{2\}$	\mathbf{M}	$\rightarrow \varepsilon$	$\left.x_{1}\{4\} \begin{array}{\|c}\boldsymbol{\ell} \\ 1 \\ x_{1}\end{array}\right]$

synchronization of nonterminals and terminals:

sDCP-rule:	$\begin{array}{ccc}\{2\} & \mathbf{M}\end{array} \rightarrow \varepsilon$	$\begin{array}{lcc} x_{1} & \{4\} \\ & & \begin{array}{c} \boldsymbol{\ell} \\ 1 \\ x_{1} \end{array} \\ \hline \end{array}$	$\rightarrow \varepsilon$
LCFRS-rule:	$\{2\}(\mathbf{M}) \rightarrow \varepsilon$	$\{4\}(\ell)$	$\rightarrow \varepsilon$

synchronization of nonterminals and terminals:

synchronization of nonterminals and terminals:

synchronization of nonterminals and terminals:

grammar induction from one hybrid tree:

$L(G)=\{h\}$
parsing of $\operatorname{str}(h)$ according to π
grammar induction from a corpus of hybrid trees:
corpus of hybrid trees + choice of recursive partitioning

grammar induction from a corpus of hybrid trees:
corpus of hybrid trees + choice of recursive partitioning

grammar induction from a corpus of hybrid trees:
corpus of hybrid trees + choice of recursive partitioning

grammar formalisms	phrase structure trees		dependency trees		parsing compl.
	cont.	discont.	proj.	non-proj.	
REG/HMM	-	-	-	-	$\mathcal{O}(n)$
CFG	\mathbf{x}	-	\mathbf{x}	-	$\mathcal{O}\left(n^{3}\right)($ CNF $)$
LCFRS	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	$\mathcal{O}\left(n^{3 \cdot \text { fanout(G) })(\text { binar. })}\right.$

(LCFRS,sDCP)-hybrid grammar:
choice of recursive partitioning:

- directly extracted and transformed to fanout $\leq k \quad \mathcal{O}\left(n^{3 \cdot k}\right)$
- left-/right-branching
experiments for dependency parsing:
- NEGRA corpus; 16.509 German language sentences of length ≤ 25
experiments for dependency parsing:
- NEGRA corpus; 16.509 German language sentences of length ≤ 25
- split into: training corpus (14.858) and test corpus (1.651)
training corpus $C_{1} \longrightarrow$ probabilistic hybrid grammar (G, p)
test corpus $C_{2}: \quad \forall h \in C_{2}: h \stackrel{?}{=} \operatorname{parsing}_{(G, p)}(\operatorname{str}(h))$

experiments for dependency parsing:

- NEGRA corpus; 16.509 German language sentences of length ≤ 25
- split into: training corpus (14.858) and test corpus (1.651)
- evaluation metrics: unlabeled attachement score (UAS), labeled attachment score (LAS), label accuracy (LA)
(a)

experiments for dependency parsing:
- NEGRA corpus; 16.509 German language sentences of length ≤ 25
- split into: training corpus (14.858) and test corpus (1.651)
- evaluation metrics: unlabeled attachement score (UAS), labeled attachment score (LAS), label accuracy (LA)
- parameters of our grammar induction:
- naming scheme (strict labeling, child labeling)
- argument label (POS+DEPREL, POS, DEPREL)
- recursive partitioning (directly extracted, transformed to fanout k, left-/right-branching)

rec. part.	argument label	nont.	rules	$f_{\text {max }}$	$f_{\text {avg }}$	fail	UAS	LAS	LA	time
child labeling										
direct	POS+DEPREL	4,739	27,042	7	1.10	693	52.2	40.8	42.6	253
$k=1$	POS+DEPREL	13,178	35,071	1	1.00	202	77.0	69.1	73.3	288
$k=2$	POS+DEPREL	11,156	32,231	2	1.17	195	77.7	70.1	74.2	355
r-branch	POS+DEPREL	42,577	79,648	1	1.00	775	45.7	32.8	34.7	49
I-branch	POS+DEPREL	40,100	75,321	1	1.00	768	46.0	33.2	35.0	45
direct	POS	675	19,276	7	1.24	303	69.3	50.0	55.4	300
$k=1$	POS	3,464	15,826	1	1.00	30	82.5	63.5	70.6	244
$k=2$	POS	2,099	13,347	2	1.40	35	82.4	63.3	70.5	410
r-branch	POS	19,804	51,733	1	1.00	372	62.7	44.7	50.6	222
I-branch	POS	17,240	45,883	1	1.00	342	63.9	45.6	51.4	197
direct	DEPREL	2,505	19,511	7	1.13	3	78.9	71.6	78.6	484
$k=1$	DEPREL	8,059	22,613	1	1.00	1	79.5	71.7	79.0	608
$k=2$	DEPREL	6,651	20,314	2	1.20	1	79.8	72.0	79.2	971
$k=3$	DEPREL	6,438	19,962	3	1.25	1	79.5	71.9	79.1	1,013
r-branch	DEPREL	27,653	54,360	1	1.00	2	76.3	67.5	76.1	216
I-branch	DEPREL	25,699	50,418	1	1.00	1	76.2	67.6	76.1	198
cascade: child labeling, $k=1, \mathrm{POS}+$ DEPREL/POS/DEPREL						1	84.3	76.1	81.6	325

LCFRS [Maier, Kallmeyer 10]:									
rparse ($v=1, h=3$)	40,141	61,450	7	1.10	13	78.5	71.4	79.0	778
MaltParser, unlexicalized, stacklazy [Nivre, Hall, Nilsson 06]					0	85.6	80.0	85.0	24

rec. part.	argument label	nont.	rules	$f_{\max }$		$f_{\text {avg }}$	fail UAS	LAS	LA	time
child labeling										

direct	POS+DEPREL	4,739	27,042	7	1.10	693	52.2	40.8	42.6	253
$k=1$	POS+DEPREL	13,178	35,071	1	1.00	202	77.0	69.1	73.3	288
$k=2$	POS+DEPREL	11,156	32,231	2	1.17	195	77.7	70.1	74.2	355
r-branch	POS+DEPREL	42,577	79,648		1.00	775	45.7	32.8	34.7	49
I-branch	POS+DEPREL	40,100	75,321	1	1.00	768	46.0	33.2	35.0	45
direct	POS	675	19,276		1.24	303	69.3	50.0	55.4	300
$k=1$	POS	3,464	15,826		1.00	30	82.5	63.5	70.6	244
$k=2$	POS	2,099	13,347		1.40	35	82.4	63.3	70.5	410
r-branch	POS	19,804	51,733	1	1.00	372	62.7	44.7	50.6	222
I-branch	POS	17,240	45,883	1	1.00	342	63.9	45.6	51.4	197
direct	DEPREL	2,505	19,511	7	1.13	3	78.9	71.6	78.6	484
$k=$	DEPREL	8,059	22,613		1.00	1	79.5	71.7	79.0	608
$k=2$	DEPREL	6,651	20,314	2	1.20	1	79.8	72.0	79.2	971
$k=3$	DEPREL	6,438	19,962	3	1.25	1	79.5	71.9	79.1	1,013
r-branch	DEPREL	27,653	54,360	1	1.00	2	76.3	67.5	76.1	216
I-branch	DEPREL	25,699	50,418	1	1.00	1	76.2	67.6	76.1	198
cascade: child labeling, $k=1$, POS+DEPREL/POS/DEPREL						1	84.3	76.1	81.6	325

| LCFRS [Maier, Kallmeyer 10]: | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| rparse simple
 rparse $(v=1, h=3)$ | 40,141 | 61,587 | 7 | 1.37 | 56 | 77.3 | 70.0 | 76.2 | 350 |

[Chomsky 56]: Three Models for the Description of Language.
"There are two central problems in the descriptive study of languages. One primary concern of the linguist is to discover simple and *revealing* grammars for natural languages. At the same time, by studying the properties of such successful grammars ..., he hopes to arrive at a general theory of linguistic structure."
parsing of natural languages with ...

- probabilistic LCFRS
- probabilistic hybrid grammars
- induction of probabilistic (LCFRS,sDCP)-hybrid grammars
- experiments
[Chomsky 56]: Three Models for the Description of Language.
"There are two central problems in the descriptive study of languages. One primary concern of the linguist is to discover simple and *revealing* grammars for natural languages. At the same time, by studying the properties of such successful grammars ..., he hopes to arrive at a general theory of linguistic structure."
parsing of natural languages with ...
- probabilistic LCFRS
- probabilistic hybrid grammars
- induction of probabilistic (LCFRS,sDCP)-hybrid grammars
- experiments

References:

- [Chomsky 56] Three Models for the Description of Language.
- [Deransart, Maluszynski 85] Relating logic programs and attribute grammars.
- [Drewes, Gebhardt, HV 16] EM-training for weighted aligned hypergraph bimorphisms.
- [Gebhardt, Nederhof, HV 17] Hybrid grammars for parsing of discontinuous phrase structures and non-projective dependency structures.
- [Kallmeyer, Maier 10] Data-driven parsing with probabilistic linear context-free rewriting systems.
- [Kuhlmann, Satta 09] Treebank grammar techniques for non-projective dependency parsing.
- [Maier, Kallmeyer 10] Discontinuity and non-projectivity: Using mildly context-sensitive formalisms for data-driven parsing.
- [Nivre, Hall, Nilsson 06] Maltparser: A data-driven parser-generator for dependency parsing.
- [Rounds 70] Tree-oriented proofs of some theorems on context-free and indexed languages.
- [Salomaa, Soittola 78] Automata-Theoretic Aspects of Formal Power Series.
- [Seki, Matsumura, Fujii, Kasami 91] On multiple context-free grammars.
- [Tesniére 59] Éleménts de syntaxe structurale.
- [Vijay-Shanker, Weir, Joshi 87] Characterizing structural descriptions produced by various grammatical formalisms.
... a bit of theory of LCFRS:
[Vijay-Shanker, Weir, Joshi 87]
[Seki, Matsura, Fujii, Kasami 91]
[Seki, Kato 91]
[Denkinger 15] and others
m-LCFRS $(m \in \mathbb{N})$: m is maximal number of arguments of nonterminals (fan-out)
... a bit of theory of LCFRS:
[Vijay-Shanker, Weir, Joshi 87]
[Seki, Matsura, Fujii, Kasami 91]
[Seki, Kato 91]
[Denkinger 15] and others
m-LCFRS $(m \in \mathbb{N})$: m is maximal number of arguments of nonterminals (fan-out)
- 1-LCFRS = context-free languages
... a bit of theory of LCFRS:
[Vijay-Shanker, Weir, Joshi 87]
[Seki, Matsura, Fujii, Kasami 91]
[Seki, Kato 91]
[Denkinger 15] and others
m-LCFRS $(m \in \mathbb{N}): m$ is maximal number of arguments of nonterminals (fan-out)
- 1-LCFRS $=$ context-free languages
- $\left\{a_{1}^{n} a_{2}^{n} \ldots a_{2 m}^{n} \mid n \geq 0\right\} \in m$-LCFRS $\backslash(m-1)$-LCFRS for each $m \in \mathbb{N}$
... a bit of theory of LCFRS:
[Vijay-Shanker, Weir, Joshi 87]
[Seki, Matsura, Fujii, Kasami 91]
[Seki, Kato 91]
[Denkinger 15] and others
m-LCFRS $(m \in \mathbb{N}): m$ is maximal number of arguments of nonterminals (fan-out)
- 1-LCFRS $=$ context-free languages
- $\left\{a_{1}^{n} a_{2}^{n} \ldots a_{2 m}^{n} \mid n \geq 0\right\} \in m$-LCFRS $\backslash(m-1)$-LCFRS for each $m \in \mathbb{N}$
- $\left\{\left(a^{m} b^{m}\right)^{n} \mid m, n \geq 1\right\}$ is not LCFRS.
... a bit of theory of LCFRS:
[Vijay-Shanker, Weir, Joshi 87]
[Seki, Matsura, Fujii, Kasami 91]
[Seki, Kato 91]
[Denkinger 15] and others
m-LCFRS $(m \in \mathbb{N})$: m is maximal number of arguments of nonterminals (fan-out)
- 1-LCFRS $=$ context-free languages
- $\left\{a_{1}^{n} a_{2}^{n} \ldots a_{2 m}^{n} \mid n \geq 0\right\} \in m$-LCFRS $\backslash(m-1)$-LCFRS for each $m \in \mathbb{N}$
- $\left\{\left(a^{m} b^{m}\right)^{n} \mid m, n \geq 1\right\}$ is not LCFRS.
- m-LCFRS is a substitution-closed full AFL.
... a bit of theory of LCFRS:
[Vijay-Shanker, Weir, Joshi 87]
[Seki, Matsura, Fujii, Kasami 91]
[Seki, Kato 91]
[Denkinger 15] and others
m-LCFRS $(m \in \mathbb{N})$: m is maximal number of arguments of nonterminals (fan-out)
- 1-LCFRS = context-free languages
- $\left\{a_{1}^{n} a_{2}^{n} \ldots a_{2 m}^{n} \mid n \geq 0\right\} \in m$-LCFRS $\backslash(m-1)$-LCFRS for each $m \in \mathbb{N}$
- $\left\{\left(a^{m} b^{m}\right)^{n} \mid m, n \geq 1\right\}$ is not LCFRS.
- m-LCFRS is a substitution-closed full AFL.
- well-nested LCFRS are linear macro languages.
... a bit of theory of LCFRS:
[Vijay-Shanker, Weir, Joshi 87]
[Seki, Matsura, Fujii, Kasami 91]
[Seki, Kato 91]
[Denkinger 15] and others
m-LCFRS $(m \in \mathbb{N})$: m is maximal number of arguments of nonterminals (fan-out)
- 1-LCFRS $=$ context-free languages
- $\left\{a_{1}^{n} a_{2}^{n} \ldots a_{2 m}^{n} \mid n \geq 0\right\} \in m$-LCFRS $\backslash(m-1)$-LCFRS for each $m \in \mathbb{N}$
- $\left\{\left(a^{m} b^{m}\right)^{n} \mid m, n \geq 1\right\}$ is not LCFRS.
- m-LCFRS is a substitution-closed full AFL.
- well-nested LCFRS are linear macro languages.
- Let G binarized m-LCFRS and $w \in \Sigma^{*}$. It can decided in $\mathcal{O}\left(|w|^{3 \cdot f a n o u t(G)}\right)$ whether $w \in L(G)$.
... a bit of theory of LCFRS:
[Vijay-Shanker, Weir, Joshi 87]
[Seki, Matsura, Fujii, Kasami 91]
[Seki, Kato 91]
[Denkinger 15] and others
m-LCFRS $(m \in \mathbb{N}): m$ is maximal number of arguments of nonterminals (fan-out)
- 1-LCFRS $=$ context-free languages
- $\left\{a_{1}^{n} a_{2}^{n} \ldots a_{2 m}^{n} \mid n \geq 0\right\} \in m$-LCFRS $\backslash(m-1)$-LCFRS for each $m \in \mathbb{N}$
- $\left\{\left(a^{m} b^{m}\right)^{n} \mid m, n \geq 1\right\}$ is not LCFRS.
- m-LCFRS is a substitution-closed full AFL.
- well-nested LCFRS are linear macro languages.
- Let G binarized m-LCFRS and $w \in \Sigma^{*}$. It can decided in $\mathcal{O}\left(|w|^{3 \cdot f a n o u t}(G)\right)$ whether $w \in L(G)$.
- Chomsky-Schützenberger theorem for weighted LCFRS

synchronous grammars:

(two grammars of the same type; synchronization via nonterminals)

- transduction grammars [Lewis, Stearns 68]
$=$ synchronous context-free grammars [Chiang 07]
- generalized syntax-directed translation schemes [Aho, Ullman 71]
- synchronous tree-substitution grammars [Schabes 90]
- synchronous tree-adjoining grammars [Abeillé, Schabes, Joshi 90; Shieber, Schabes 90]
- synchronous context-free tree grammars [Nederhof, V. 12]
- synchronous linear context-free rewriting systems [Kaeshammer 13]
- TIGER treebank (German, 50k sentences)
- NEGRA corpus (German, 20k sentences)
- Japanese Verbmobil treebank (Japanese, 20k sentences)
- The Bosque part of the Floresta sintà(c)tica (Portuguese, 41k sentences)
- Alpino treebank (Dutch, 150k words)
- Sinica treebank (Chinese, 361k words)
- ...
corpora for dependency trees
- Prague Dependency Treebank (Czech, 26k sentences)
- Slovene Dependency Treebank (Slovene, 30k words)
- Danish Dependency Treebank (Danish, 5k sentence)
- Talbanken05 (Swedish, 30k words)
- Metu-Sabancı treebank (Turkish, 7k sentences)
- ...
induction of sDCP G_{2} :

$\{2\}$ Marie $\rightarrow \varepsilon$
induction of sDCP G_{2} :

$\{2\}$ Marie $\rightarrow \varepsilon$
induction of sDCP G_{2} :

$\{2\}$ Marie $\rightarrow \varepsilon$
induction of sDCP G_{2} :

induction of SDCP G_{2} :

$\{2\}$ Marie $\rightarrow \varepsilon$
$\{1\} \rightarrow$ Piet $\rightarrow \varepsilon$
induction of sDCP G_{2} :

induction of sDCP G_{2} :

$\{2\}$ Marie $\rightarrow \varepsilon$
$\{1\} \rightarrow$ Piet $\rightarrow \varepsilon$
$\begin{array}{ll}z_{1} & \{4\} \\ \begin{array}{c}\text { lezen } \\ 1 \\ Z_{1}\end{array}\end{array} \rightarrow \varepsilon$
induction of sDCP G_{2} :

$\{2\}$ Marie $\rightarrow \varepsilon$
$\{1\} \rightarrow$ Piet $\rightarrow \varepsilon$
$\begin{array}{ll}z_{1} & \{4\} \\ \begin{array}{c}\text { lezen } \\ 1 \\ Z_{1}\end{array}\end{array} \rightarrow \varepsilon$
induction of SDCP G_{2} :

$$
\begin{gathered}
\{2\} \begin{array}{ll}
\{2\} & \text { Marie }
\end{array} \rightarrow \varepsilon \\
\begin{array}{ll}
z_{1} & \{4\} \begin{array}{|c}
\text { lezen } \\
1 \\
z_{1}
\end{array}
\end{array} \rightarrow \varepsilon
\end{gathered}
$$

$$
\{1\} \quad \text { Piet } \rightarrow \varepsilon
$$

induction of SDCP G_{2} :

$\{2\}$ Marie $\rightarrow \varepsilon$
[$z_{1}\{4\} \begin{gathered}\text { lezen } \\ 1 \\ z_{1}\end{gathered} \rightarrow \varepsilon$
$\{1\} \quad$ Piet $\rightarrow \varepsilon$
$\left.\begin{array}{llll}\left.z_{1}\right] & z_{2} & \{3\} & \begin{array}{c}\text { helpen } \\ z_{1}^{\prime} \\ z_{2} \\ \hline\end{array} \\ \hline\end{array}\right] \rightarrow \varepsilon$
induction of SDCP G_{2} :

$\{2,4\} \underline{z_{2}} \rightarrow\{2\} z_{1} \quad z_{1}\{4\} \underline{z_{2}}$
induction of sDCP G_{2} :

$\{2,4\} \underline{z_{2}} \rightarrow\{2\} z_{1} \quad z_{1}\{4\} \underline{z_{2}}$
induction of sDCP G_{2} :

$\{2,4\} \not z_{2} \rightarrow\{2\} z_{1} \quad z_{1}\{4\} z_{2}$
induction of sDCP G_{2} :

$\{2,4\} \underline{z_{2}} \rightarrow\{2\} \underline{z_{1}} \quad z_{1}\{4\} \underline{z_{2}}$
$\{1,2,4\} Z_{1} Z_{2} \rightarrow\{2,4\} Z_{1} \quad\{1\} Z_{2}$
induction of sDCP G_{2} :

$\{2,4\} \underline{z_{2}} \rightarrow\{2\} z_{1} \quad z_{1}\{4\} \underline{z_{2}}$
$\{1,2,4\} Z_{1} Z_{2} \rightarrow\{2,4\} Z_{1} \quad\{1\} Z_{2}$
induction of sDCP G_{2} :

$\{2,4\} \underline{z_{2}} \rightarrow\{2\} \underline{z_{1}} \quad z_{1}\{4\} \underline{z_{2}}$
$\{1,2,4\} Z_{1} Z_{2} \rightarrow\{2,4\} Z_{1} \quad\{1\} Z_{2}$
induction of sDCP G_{2} :

$\{2,4\} z_{2} \rightarrow\{2\} z_{1} \quad z_{1}\{4\} z_{2}$

$\{1,2,3,4\} \not z_{3} \rightarrow\{1,2,4\} z_{1} z_{2} \quad z_{2} z_{1}\{3\} z_{3}$

