The Chomsky-Schützenberger Theorem for Quantitative Context-Free Languages

Manfred Droste, University of Leipzig, Germany Heiko Vogler, TU Dresden, Germany

DLT 2013
$G: \rho_{1}: S \rightarrow A S A$
$\rho_{2}: S \rightarrow b$
$\rho_{3}: A \rightarrow a$

$G: \rho_{1}: \quad S \rightarrow A S A$
$\rho_{2}: S \rightarrow b$
$\rho_{3}: A \rightarrow a$
$S \rightarrow\left[{ }_{\rho_{1}}^{1} A\right]_{\rho_{1}}^{1}\left[{ }_{\rho_{1}}^{2} S\right]_{\rho_{1}}^{2}\left[{ }_{\rho_{1}}^{3} A\right]_{\rho_{1}}^{3}$
$S \rightarrow\left[\rho_{2}\right]_{\rho_{2}}$

$G: \rho_{1}: \quad S \rightarrow A S A$
$S \rightarrow\left[{ }_{\rho_{1}}^{1} A\right]_{\rho_{1}}^{1}\left[{ }_{\rho_{1}}^{2} S\right]_{\rho_{1}}^{2}\left[{ }_{\rho_{1}}^{3} A\right]_{\rho_{1}}^{3}$

$G: \rho_{1}: \quad S \rightarrow A S A$
$\rho_{2}: S \rightarrow b$
$\rho_{3}: A \rightarrow a$

$\left[\rho_{\rho_{1}}^{1}\left[\rho_{\rho_{3}}\right]_{\rho_{3}}\right]_{\rho_{1}}^{1}\left[{ }_{\rho_{1}}^{2}\left[\rho_{\rho_{2}}\right]_{\rho_{\rho}}\right]_{\rho_{1}}^{2}\left[\rho_{\rho_{1}}^{3}\left[\rho_{\rho_{3}}\right]_{\rho_{3}}\right]_{\rho_{1}}^{3}$
$G: \rho_{1}: \quad S \rightarrow A S A$
$S \rightarrow\left[{ }_{\rho_{1}}^{1} A\right]_{\rho_{1}}^{1}\left[{ }_{\rho_{1}}^{2} S\right]_{\rho_{1}}^{2}\left[{ }_{\rho_{1}}^{3} A\right]_{\rho_{1}}^{3}$
$\rho_{2}: S \rightarrow b$ $S \rightarrow\left[\rho_{2}\right]_{\rho_{2}}$
$A \rightarrow\left[\rho_{3}\right]_{\rho_{3}}$

Dyck-language
$\left[{ }_{\rho_{1}}^{1}\left[\rho_{3}\right]_{\rho_{3}}\right]_{\rho_{1}}^{1} \quad\left[{ }_{\rho_{1}}^{2}\left[\rho_{2}\right]_{\rho_{2}}\right]_{\rho_{1}}^{2}\left[{ }_{\rho_{1}}^{3}\left[\rho_{3}\right]_{\rho_{3}}\right]_{\rho_{1}}^{3} \in D(\underbrace{\left\{\left[\rho_{\rho_{1}}^{1},\left[{ }_{\rho_{1}}^{2},\left[_{\rho_{1}}^{3},\left[\rho_{2},\left[\rho_{3}\right\}\right.\right.\right.\right.\right.}_{Y})$
$G: \rho_{1}: \quad S \rightarrow A S A$
$S \rightarrow\left[{ }_{\rho_{1}}^{1} A\right]_{\rho_{1}}^{1}\left[{ }_{\rho_{1}}^{2} S\right]_{\rho_{1}}^{2}\left[{ }_{\rho_{1}}^{3} A\right]_{\rho_{1}}^{3}$
$\rho_{2}: S \rightarrow b$
$\rho_{3}: A \rightarrow a$

$$
S \rightarrow\left[\rho_{2}\right]_{\rho_{2}}
$$

$$
A \rightarrow\left[\rho_{3}\right]_{\rho_{3}}
$$

Dyck-language
$\left[{ }_{\rho_{1}}^{1}\left[\rho_{3}\right]_{\rho_{3}}\right]_{\rho_{1}}^{1} \quad\left[{ }_{\rho_{1}}^{2}\left[\rho_{2}\right]_{\rho_{2}}\right]_{\rho_{1}}^{2} \quad\left[\begin{array}{l}\rho_{1}\end{array}\left[\rho_{3}\right]_{\rho_{3}}\right]_{\rho_{1}}^{3} \in D(\underbrace{\left\{\left[\begin{array}{l}1 \\ \rho_{1}\end{array},\left[{ }_{\rho_{1}}^{2},{ }_{\rho_{1}}^{3},\left[\rho_{2},\left[\rho_{3}\right\}\right.\right.\right.\right.})$
$\left[\rho_{3}\right]_{\rho_{3}} \quad\left[{ }_{\rho_{1}}^{2}\left[\rho_{3}\right]_{\rho_{3}}\right]_{\rho_{1}}^{2} \quad\left[\frac{\rho_{1}}{1}\left[\rho_{3}\right]_{\rho_{3}}\right]_{\rho_{1}}^{1} \in D(Y)$
$G: \rho_{1}: \quad S \rightarrow A S A$
$\rho_{2}: S \rightarrow b$
$\rho_{3}: A \rightarrow a$
$S \rightarrow\left[{ }_{\rho_{1}}^{1} A\right]_{\rho_{1}}^{1}\left[{ }_{\rho_{1}}^{2} S\right]_{\rho_{1}}^{2}\left[{ }_{\rho_{1}}^{3} A\right]_{\rho_{1}}^{3}$
$S \rightarrow\left[\rho_{2}\right]_{\rho_{2}}$
$A \rightarrow\left[{ }_{\rho_{3}}\right]_{\rho_{3}}$

Dyck-language
$\left[{ }_{\rho_{1}}^{1}\left[\rho_{3}\right]_{\rho_{3}}\right]_{\rho_{1}}^{1} \quad\left[{ }_{\rho_{1}}^{2}\left[\rho_{2}\right]_{\rho_{2}}\right]_{\rho_{1}}^{2} \quad\left[{ }_{\rho_{1}}^{3}\left[\rho_{3}\right]_{\rho_{3}}\right]_{\rho_{1}}^{3} \in D(\underbrace{\left\{\left[\begin{array}{l}1 \\ \rho_{1}\end{array},{ }_{\rho_{1}}^{2},\left[{ }_{\rho_{1}}^{3},\left[\rho_{\rho_{2}},\left[\rho_{\rho_{3}}\right\}\right.\right.\right.\right.})$
$\left[\rho_{3}\right]_{\rho_{3}} \quad\left[{ }_{\rho_{1}}^{2}\left[\rho_{3}\right]_{\rho_{3}}\right]_{\rho_{1}}^{2} \quad\left[{ }_{\rho_{1}}^{1}\left[\rho_{3}\right]_{\rho_{3}}\right]_{\rho_{1}}^{1} \in D(Y)$
check local properties: $\quad D(Y) \cap R$
$G: \rho_{1}: S \rightarrow A S A$
$\rho_{2}: S \rightarrow b$
$\rho_{3}: A \rightarrow a$

Dyck-language
$\left[{ }_{\rho_{1}}^{1}\left[\rho_{3}\right]_{\rho_{3}}\right]_{\rho_{1}}^{1} \quad\left[{ }_{\rho_{1}}^{2}\left[\rho_{2}\right]_{\rho_{2}}\right]_{\rho_{1}}^{2}\left[{ }_{\rho_{1}}^{3}\left[\rho_{3}\right]_{\rho_{3}}\right]_{\rho_{1}}^{3} \in D(\underbrace{\left\{\left[\begin{array}{l}1 \\ \rho_{1}\end{array},{ }_{\rho_{1}}^{2},\left[\begin{array}{l}3 \\ \rho_{1}\end{array},\left[\rho_{\rho_{2}},\left[{ }_{\rho_{3}}\right\}\right.\right.\right.\right.})$ $\left[\rho_{3}\right]_{\rho_{3}} \quad\left[{ }_{\rho_{1}}^{2}\left[\rho_{3}\right]_{\rho_{3}}\right]_{\rho_{1}}^{2} \quad\left[{ }_{\rho_{1}}^{1}\left[\rho_{3}\right]_{\rho_{3}}\right]_{\rho_{1}}^{1} \in D(Y)$
check local properties: $\quad D(Y) \cap R$
alphabetic morphism:

$$
h: Y \cup \bar{Y} \rightarrow \Sigma \cup\{\varepsilon\}
$$

$$
h(y)= \begin{cases}b & \text { if } y=\left[\rho_{2}\right. \\ a & \text { if } y=\left[\rho_{3}\right. \\ \varepsilon & \text { otherwise }\end{cases}
$$

Theorem [Chomsky, Schützenberger 63]
Let $L \subseteq \Sigma^{*}$.
If $L=L(G)$ for some CF grammar G,
then there are

- an alphabet Y,
- a recognizable language R over $Y \cup \bar{Y}$, and
- an alphabetic morphism $h: Y \cup \bar{Y} \rightarrow \Sigma \cup\{\varepsilon\}$ such that $L=h^{\prime}(D(Y) \cap R)$.

Theorem [Chomsky, Schützenberger 63]
Let $L \subseteq \Sigma^{*}$.
If $L=L(G)$ for some CF grammar G,
then there are

- an alphabet Y,
- a recognizable language R over $Y \cup \bar{Y}$, and
- an alphabetic morphism $h: Y \cup \bar{Y} \rightarrow \Sigma \cup\{\varepsilon\}$ such that $L=h^{\prime}(D(Y) \cap R)$.

Moreover, for every $w \in L(G)$:

$$
\left|D_{G}(w)\right|=\left|\left\{u \in D(Y) \cap R \mid h^{\prime}(u)=w\right\}\right|
$$

(degree of ambiguity)

Theorem [Chomsky, Schützenberger 63]
Let $L \subseteq \Sigma^{*}$.
If $L=L(G)$ for some CF grammar G,
then there are

- an alphabet Y,
- a recognizable language R over $Y \cup \bar{Y}$, and
- an alphabetic morphism $h: Y \cup \bar{Y} \rightarrow \Sigma \cup\{\varepsilon\}$ such that $L=h^{\prime}(D(Y) \cap R)$.

Moreover, for every $w \in L(G)$:

$$
\left|D_{G}(w)\right|=\left|\left\{u \in D(Y) \cap R \mid h^{\prime}(u)=w\right\}\right|
$$

(degree of ambiguity)
$L: \Sigma^{*} \rightarrow \mathbb{N} ; \quad w \mapsto\left|D_{G}(w)\right|$
weighted languages (formal power series) $L: \Sigma^{*} \rightarrow K$
$(K,+, \cdot, 0,1)$ semiring

- $(K,+, 0)$ commutative monoid
- $(K, \cdot, 1)$ monoid
- distributes over +
- 0 is absorbing for \cdot, i.e., $a \cdot 0=0 \cdot a=0$

Examples:

1. natural numbers $(\mathbb{N},+, \cdot, 0,1)$
2. Boolean semiring ($\{$ true, false $\}, \vee, \wedge$, false, true)
3. distributive bounded lattices $(L, \vee, \wedge, 0,1)$
4. fields
weighted CF languages over semiring $(K,+, \cdot, 0,1)$:

- CF grammar with weights $G=(N, \Sigma, Z, P, \mathrm{wt})$

$$
\mathrm{wt}: P \rightarrow K
$$

weighted CF languages over semiring $(K,+, \cdot, 0,1)$:

- CF grammar with weights $G=(N, \Sigma, Z, P$, wt $)$

$$
\mathrm{wt}: P \rightarrow K
$$

- weight of a derivation: $\operatorname{wt}\left(\rho_{1} \ldots \rho_{n}\right)=\operatorname{wt}\left(\rho_{1}\right) \cdot \ldots \cdot \operatorname{wt}\left(\rho_{n}\right)$
weighted CF languages over semiring $(K,+, \cdot, 0,1)$:
- CF grammar with weights $G=(N, \Sigma, Z, P$, wt $)$

$$
\mathrm{wt}: P \rightarrow K
$$

- weight of a derivation: $\operatorname{wt}\left(\rho_{1} \ldots \rho_{n}\right)=\operatorname{wt}\left(\rho_{1}\right) \cdot \ldots \cdot \operatorname{wt}\left(\rho_{n}\right)$
- weighted language of G :

$$
\|G\|: \Sigma^{*} \rightarrow K, \quad w \mapsto \sum_{d \in D_{G}(w)} \mathrm{wt}(d)
$$

weighted CF languages over semiring $(K,+, \cdot, 0,1)$:

- CF grammar with weights $G=(N, \Sigma, Z, P$, wt $)$

$$
\text { wt }: P \rightarrow K
$$

- weight of a derivation: $\operatorname{wt}\left(\rho_{1} \ldots \rho_{n}\right)=\operatorname{wt}\left(\rho_{1}\right) \cdot \ldots \cdot \operatorname{wt}\left(\rho_{n}\right)$
- weighted CF grammar:
- CF grammar with weights and
- K is complete or $D_{G}(w)$ is finite for every $w \in \Sigma^{*}$
- weighted language of a weighted CF grammar G:

$$
\|G\|: \Sigma^{*} \rightarrow K, \quad w \mapsto \sum_{d \in D_{G}(w)} \mathrm{wt}(d)
$$

weighted CF languages over semiring $(K,+, \cdot, 0,1)$:

- CF grammar with weights $G=(N, \Sigma, Z, P$, wt $)$

$$
\text { wt }: P \rightarrow K
$$

- weight of a derivation: $\operatorname{wt}\left(\rho_{1} \ldots \rho_{n}\right)=\operatorname{wt}\left(\rho_{1}\right) \cdot \ldots \cdot \operatorname{wt}\left(\rho_{n}\right)$
- weighted CF grammar:
- CF grammar with weights and
- K is complete or $D_{G}(w)$ is finite for every $w \in \Sigma^{*}$
- weighted language of a weighted CF grammar G:

$$
\|G\|: \Sigma^{*} \rightarrow K, \quad w \mapsto \sum_{d \in D_{G}(w)} \mathrm{wt}(d)
$$

- $L: \Sigma^{*} \rightarrow K$ is a weighted CF language: \exists weighted CF grammar G over semiring $K: \quad L=\|G\|$.

Theorem [Chomsky, Schützenberger 63] (revisited)
Let $L: \Sigma^{*} \rightarrow \mathbb{N}$ and $(\mathbb{N},+, \cdot, 0,1)$ natural number semiring.
If $L=L(G)$ for weighted CF grammar G with $w t(p)=1$ for every $p \in P$,
then there are

- an alphabet Y,
- a recognizable language R over $Y \cup \bar{Y}$, and
- an alphabetic morphism $h: Y \cup \bar{Y} \rightarrow \Sigma \cup\{\varepsilon\}$ such that $L=h^{\prime}(\operatorname{char}(D(Y) \cap R))$

Theorem [Salomaa, Soittola 78]
Let $L: \Sigma^{*} \rightarrow K$ and $(K,+, \cdot, 0,1)$ commutative semiring.
The following are equivalent:

1. L is weighted CF language
2. there are

- an alphabet Y,
- a recognizable language R over $Y \cup \bar{Y}$, and
- an alphabetic morphism $h: Y \cup \bar{Y} \rightarrow K^{\sum \cup\{\varepsilon\}}$
such that $L=h^{\prime}(\operatorname{char}(D(Y) \cap R))$
quantitative languages $L: \Sigma^{*} \rightarrow K$
[Chatterjee, Doyen, Henzinger 10]
$(K,+$, val, 0$)$ valuation monoid
[Droste, Meinecke 10]
- $(K,+, 0)$ commutative monoid
- val : $K^{+} \rightarrow K, \quad \operatorname{val}(a)=a, \quad \operatorname{val}(\ldots 0 \ldots)=0$
quantitative languages $L: \Sigma^{*} \rightarrow K$
[Chatterjee, Doyen, Henzinger 10]
$(K,+$, val, 0$)$ valuation monoid
[Droste, Meinecke 10]
- $(K,+, 0)$ commutative monoid
- val : $K^{+} \rightarrow K, \quad \operatorname{val}(a)=a, \quad \operatorname{val}(\ldots 0 \ldots)=0$

Examples:

1. $(\mathbb{R} \cup\{-\infty\}$, sup, avg, $-\infty) \quad \operatorname{avg}\left(a_{1} \ldots a_{n}\right)=\frac{1}{n} \cdot \sum_{i=1}^{n} a_{i}$

- $(K,+, 0)$ commutative monoid
- val : $K^{+} \rightarrow K, \quad \operatorname{val}(a)=a, \quad \operatorname{val}(\ldots 0 \ldots)=0$

Examples:

1. $(\mathbb{R} \cup\{-\infty\}$, sup, avg, $-\infty)$ $\operatorname{avg}\left(a_{1} \ldots a_{n}\right)=\frac{1}{n} \cdot \sum_{i=1}^{n} a_{i}$
2. strong bimonoid ($K,+, \cdot, 0,1$)

- $(K,+, 0)$ commutative monoid
- $(K, \cdot, 1)$ monoid
- 0 absorbing for
e.g., semirings, bounded lattices
quantitative languages $L: \Sigma^{*} \rightarrow K$
[Chatterjee, Doyen, Henzinger 10]
$(K,+$, val, 0$) \quad$ valuation monoid
- $(K,+, 0)$ commutative monoid
- val : $K^{+} \rightarrow K, \quad \operatorname{val}(a)=a, \quad \operatorname{val}(\ldots 0 \ldots)=0$
quantitative languages $L: \Sigma^{*} \rightarrow K$
[Chatterjee, Doyen, Henzinger 10]
$(K,+$, val, 0,1$)$ unital valuation monoid [Droste, Vogler 13]
- $(K,+, 0)$ commutative monoid
- val : $K^{*} \rightarrow K, \quad \operatorname{val}(a)=a, \quad \operatorname{val}(\ldots 0 \ldots)=0$
- $\operatorname{val}(\ldots 1 \ldots)=\operatorname{val}(\ldots \ldots)$
- $\operatorname{val}(\varepsilon)=1$
quantitative languages $L: \Sigma^{*} \rightarrow K$
[Chatterjee, Doyen, Henzinger 10]
$(K,+$, val, 0,1$)$ unital valuation monoid
[Droste, Vogler 13]
- $(K,+, 0)$ commutative monoid
- val : $K^{*} \rightarrow K, \quad \operatorname{val}(a)=a, \quad \operatorname{val}(\ldots 0 \ldots)=0$
- $\operatorname{val}(\ldots 1 \ldots)=\operatorname{val}(\ldots \ldots)$
- $\operatorname{val}(\varepsilon)=1$

Example:
$(\mathbb{R} \cup\{-\infty\}$, sup, avg, $-\infty)$ $\operatorname{avg}\left(a_{1} \ldots a_{n}\right)=\frac{1}{n} \cdot \sum_{i=1}^{n} a_{i}$
$(\mathbb{R} \cup\{-\infty,+\infty\}$, sup, avg, $-\infty,+\infty)$

$$
\operatorname{avg}(\ldots+\infty \ldots)=\operatorname{avg}(\ldots \ldots)
$$

quantitative languages $L: \Sigma^{*} \rightarrow K$
[Chatterjee, Doyen, Henzinger 10]
$(K,+$, val, 0,1$)$ unital valuation monoid [Droste, Vogler 13]

- $(K,+, 0)$ commutative monoid
- val : $K^{*} \rightarrow K, \quad \operatorname{val}(a)=a, \quad \operatorname{val}(\ldots 0 \ldots)=0$
- $\operatorname{val}(\ldots 1 \ldots)=\operatorname{val}(\ldots \ldots)$
- $\operatorname{val}(\varepsilon)=1$
- $(K,+, 0)$ commutative monoid
- val : $K^{*} \rightarrow K, \quad \operatorname{val}(a)=a, \quad \operatorname{val}(\ldots 0 \ldots)=0$
- $\operatorname{val}(\ldots 1 \ldots)=\operatorname{val}(\ldots \ldots)$
- $\operatorname{val}(\varepsilon)=1$

In general, val is

- not commutative
- not associative
- not distributive over +
weighted CF languages over semiring $(K,+, \cdot, 0,1)$:
- CF grammar with weights $G=(N, \Sigma, Z, P$, wt $)$

$$
\text { wt }: P \rightarrow K
$$

- weight of a derivation:

$$
\operatorname{wt}\left(\rho_{1} \ldots \rho_{n}\right)=\operatorname{wt}\left(\rho_{1}\right) \cdot \ldots \cdot \operatorname{wt}\left(\rho_{n}\right)
$$

- weighted CF grammar:
- CF grammar with weights and
- K is complete or $D_{G}(w)$ is finite for every $w \in \Sigma^{*}$
- weighted language of a weighted CF grammar G:

$$
\|G\|: \Sigma^{*} \rightarrow K, \quad w \mapsto \sum_{d \in D_{G}(w)} \mathrm{wt}(d)
$$

- $L: \Sigma^{*} \rightarrow K$ is a weighted CF language: \exists weighted CF grammar G over semiring K : $L=\|G\|$.
quantitative CF languages over unital val. monoid $(K,+$, val, 0,1$)$:
- CF grammar with weights $G=(N, \Sigma, Z, P, \mathrm{wt})$
- weight of a derivation:

$$
\operatorname{wt}\left(\rho_{1} \ldots \rho_{n}\right)=\operatorname{wt}\left(\rho_{1}\right) \cdot \ldots \cdot \operatorname{wt}\left(\rho_{n}\right)
$$

- weighted CF grammar:
- CF grammar with weights and
- K is complete or $D_{G}(w)$ is finite for every $w \in \Sigma^{*}$
- weighted language of a weighted CF grammar G:

$$
\|G\|: \Sigma^{*} \rightarrow K, \quad w \mapsto \sum_{d \in D_{G}(w)} \mathrm{wt}(d)
$$

- $L: \Sigma^{*} \rightarrow K$ is a weighted CF language: \exists weighted CF grammar G over semiring K : $L=\|G\|$.
quantitative CF languages over unital val. monoid $(K,+$, val, 0,1$)$:
- CF grammar with weights $G=(N, \Sigma, Z, P$, wt $)$
$\mathrm{wt}: P \rightarrow K$
- weight of a derivation:

$$
\operatorname{wt}\left(\rho_{1} \ldots \rho_{n}\right)=\operatorname{wt}\left(\rho_{1}\right) \cdot \ldots \cdot \operatorname{wt}\left(\rho_{n}\right)
$$

- weighted CF grammar:
- CF grammar with weights and
- K is complete or $D_{G}(w)$ is finite for every $w \in \Sigma^{*}$
- weighted language of a weighted CF grammar G:

$$
\|G\|: \Sigma^{*} \rightarrow K, \quad w \mapsto \sum_{d \in D_{G}(w)} \mathrm{wt}(d)
$$

- $L: \Sigma^{*} \rightarrow K$ is a weighted CF language: \exists weighted CF grammar G over semiring K : $L=\|G\|$.
quantitative CF languages over unital val. monoid $(K,+$, val, 0,1$)$:
- CF grammar with weights $G=(N, \Sigma, Z, P, \mathrm{wt})$

$$
\text { wt }: P \rightarrow K
$$

- weight of a derivation:

$$
\mathrm{wt}\left(\rho_{1} \ldots \rho_{n}\right)=\operatorname{val}\left(\operatorname{wt}\left(\rho_{1}\right) \ldots \operatorname{wt}\left(\rho_{n}\right)\right)
$$

- weighted CF grammar:
- CF grammar with weights and
- K is complete or $D_{G}(w)$ is finite for every $w \in \Sigma^{*}$
- weighted language of a weighted CF grammar G:

$$
\|G\|: \Sigma^{*} \rightarrow K, \quad w \mapsto \sum_{d \in D_{G}(w)} \mathrm{wt}(d)
$$

- $L: \Sigma^{*} \rightarrow K$ is a weighted CF language: \exists weighted CF grammar G over semiring K : $L=\|G\|$.
quantitative CF languages over unital val. monoid $(K,+$, val, 0,1$)$:
- CF grammar with weights $G=(N, \Sigma, Z, P$, wt $)$
- weight of a derivation:

$$
\mathrm{wt}\left(\rho_{1} \ldots \rho_{n}\right)=\operatorname{val}\left(\operatorname{wt}\left(\rho_{1}\right) \ldots \mathrm{wt}\left(\rho_{n}\right)\right)
$$

- weighted CF grammar:
- CF grammar with weights and
- K is complete or $D_{G}(w)$ is finite for every $w \in \Sigma^{*}$
- weighted language of a weighted CF grammar G:

$$
\|G\|: \Sigma^{*} \rightarrow K, \quad w \mapsto \sum_{d \in D_{G}(w)} \mathrm{wt}(d)
$$

- $L: \Sigma^{*} \rightarrow K$ is a weighted CF language: \exists weighted CF grammar G over semiring K : $L=\|G\|$.
quantitative CF languages over unital val. monoid $(K,+$, val, 0,1$)$:
- CF grammar with weights $G=(N, \Sigma, Z, P, \mathrm{wt})$
- weight of a derivation:

$$
\operatorname{wt}\left(\rho_{1} \ldots \rho_{n}\right)=\operatorname{val}\left(\operatorname{wt}\left(\rho_{1}\right) \ldots \operatorname{wt}\left(\rho_{n}\right)\right)
$$

- weighted CF grammar:
- CF grammar with weights and
- K is complete or $D_{G}(w)$ is finite for every $w \in \Sigma^{*}$
- quantitative language of a weighted CF grammar G:

$$
\|G\|: \Sigma^{*} \rightarrow K, \quad w \mapsto \sum_{d \in D_{G}(w)} \mathrm{wt}(d)
$$

- $L: \Sigma^{*} \rightarrow K$ is a weighted CF language: \exists weighted CF grammar G over semiring K :
$L=\|G\|$.
quantitative CF languages over unital val. monoid $(K,+$, val, 0,1$)$:
- CF grammar with weights $G=(N, \Sigma, Z, P, \mathrm{wt})$

$$
\text { wt }: P \rightarrow K
$$

- weight of a derivation:

$$
\mathrm{wt}\left(\rho_{1} \ldots \rho_{n}\right)=\operatorname{val}\left(\operatorname{wt}\left(\rho_{1}\right) \ldots \mathrm{wt}\left(\rho_{n}\right)\right)
$$

- weighted CF grammar:
- CF grammar with weights and
- K is complete or $D_{G}(w)$ is finite for every $w \in \Sigma^{*}$
- quantitative language of a weighted CF grammar G:

$$
\|G\|: \Sigma^{*} \rightarrow K, \quad w \mapsto \sum_{d \in D_{G}(w)} \mathrm{wt}(d)
$$

- $L: \Sigma^{*} \rightarrow K$ is a quantitative CF language: \exists weighted CF gr. G over unital val. monoid K : $L=\|G\|$.
... in a very similar way define:
weighted pushdown automaton over unital valuation monoid
... in a very similar way define:
weighted pushdown automaton over unital valuation monoid

Theorem [Droste, Vogler 13]
Let $L: \Sigma^{*} \rightarrow K$ and $(K,+$, val, 0,1$)$ unital val. monoid. The following are equivalent:

1. L is quantitative CF language
2. L is quantitative behaviour of a weighted PDA.

Theorem [Droste, Vogler 13]
Let $L: \Sigma^{*} \rightarrow K$ and $(K,+$, val, 0,1$)$ unital val. monoid. The following are equivalent:

1. L is quantitative CF language

Theorem [Droste, Vogler 13]
Let $L: \Sigma^{*} \rightarrow K$ and $(K,+$, val, 0,1$)$ unital val. monoid. The following are equivalent:

1. L is quantitative CF language
2. there are

- an alphabet Δ,
- an unambiguous CF grammar G over Δ, and
- an alphabetic morphism $h: \Delta \rightarrow K^{\Sigma \cup\{\varepsilon\}}$
such that $L=h^{\prime}(L(G))$

Theorem [Droste, Vogler 13]
Let $L: \Sigma^{*} \rightarrow K$ and $(K,+$, val, 0,1$)$ unital val. monoid.
The following are equivalent:

1. L is quantitative CF language
2. there are

- an alphabet Δ,
- an unambiguous CF grammar G over Δ, and
- an alphabetic morphism $h: \Delta \rightarrow K^{\Sigma \cup\{\varepsilon\}}$ such that $L=h^{\prime}(L(G))$
$h^{\prime}: \Delta^{*} \rightarrow K^{\Sigma^{*}}$
$h^{\prime}\left(\delta_{1} \ldots \delta_{n}\right)=\operatorname{val}\left(a_{1} \ldots a_{n}\right) \cdot x_{1} \ldots x_{n} \quad$ if $h\left(\delta_{i}\right)=a_{i} \cdot x_{i}$

Theorem [Droste, Vogler 13]
Let $L: \Sigma^{*} \rightarrow K$ and $(K,+$, val, 0,1$)$ unital val. monoid.
The following are equivalent:

1. L is quantitative CF language
2. there are

- an alphabet Δ,
- an unambiguous CF grammar G over Δ, and
- an alphabetic morphism $h: \Delta \rightarrow K^{\Sigma \cup\{\varepsilon\}}$ such that $L=h^{\prime}(L(G))$
$h^{\prime}: \Delta^{*} \rightarrow K^{\Sigma^{*}}$
$h^{\prime}\left(\delta_{1} \ldots \delta_{n}\right)=\operatorname{val}\left(a_{1} \ldots a_{n}\right) \cdot x_{1} \ldots x_{n} \quad$ if $h\left(\delta_{i}\right)=a_{i} \cdot x_{i}$
$L \subseteq \Delta^{*}$
$h^{\prime}(L)=\sum_{v \in L} h^{\prime}(v)$

Theorem [Droste, Vogler 13]
Let $L: \Sigma^{*} \rightarrow K$ and $(K,+$, val, 0,1$)$ unital val. monoid.
The following are equivalent:

1. L is quantitative CF language
2. there are

- an alphabet Δ,
- an unambiguous CF grammar G over Δ, and
- an alphabetic morphism $h: \Delta \rightarrow K^{\Sigma \cup\{\varepsilon\}}$ such that $L=h^{\prime}(L(G))$
$h^{\prime}: \Delta^{*} \rightarrow K^{\Sigma^{*}}$
$h^{\prime}\left(\delta_{1} \ldots \delta_{n}\right)=\operatorname{val}\left(a_{1} \ldots a_{n}\right) \cdot x_{1} \ldots x_{n} \quad$ if $h\left(\delta_{i}\right)=a_{i} \cdot x_{i}$
$L \subseteq \Delta^{*}$
$h^{\prime}(L)=\sum_{v \in L} h^{\prime}(v)$
if $\left(h^{\prime}(v) \mid v \in L\right)$ locally finite or K complete.

Theorem [Droste, Vogler 13]
Let $L: \Sigma^{*} \rightarrow K$ and $(K,+$, val, 0,1$)$ unital val. monoid. The following are equivalent:

1. L is quantitative CF language
2. there are

- an alphabet Δ,
- an unambiguous CF grammar G over Δ, and
- an alphabetic morphism $h: \Delta \rightarrow K^{\Sigma \cup\{\varepsilon\}}$
such that $L=h^{\prime}(L(G))$

Theorem [Droste, Vogler 13]
Let $L: \Sigma^{*} \rightarrow K$ and ($K,+$, val, 0,1) unital val. monoid. The following are equivalent:

1. L is quantitative CF language
2. there are

- an alphabet Δ,
- an unambiguous CF grammar G over Δ, and
- an alphabetic morphism $h: \Delta \rightarrow K^{\Sigma \cup\{\varepsilon\}}$
such that $L=h^{\prime}(L(G))$

Theorem [Droste, Vogler 13]
Let $L: \Sigma^{*} \rightarrow K$ and $(K,+$, val, 0,1$)$ unital val. monoid. The following are equivalent:

1. L is quantitative CF language
2. there are

- an alphabet Δ,
- an unambiguous CF grammar G over Δ, and
- an alphabetic morphism $h: \Delta \rightarrow K^{\sum \cup\{\varepsilon\}}$ such that $L=h^{\prime}(L(G))$

3. there are

- an alphabet Y,
- a recognizable language R over $Y \cup \bar{Y}$, and
- an alphabetic morphism $h: Y \cup \bar{Y} \rightarrow K^{\sum \cup\{\varepsilon\}}$
such that $L=h^{\prime}(D(Y) \cap R)$

Theorem [Droste, Vogler 13]
Let $L: \Sigma^{*} \rightarrow K$ and $(K,+$, val, 0,1$)$ unital val. monoid.
The following are equivalent:

1. L is quantitative CF language
2. there are

- an alphabet Δ,
- an unambiguous CF grammar G over Δ, and
- an alphabetic morphism $h: \Delta \rightarrow K^{\Sigma \cup\{\varepsilon\}}$ such that $L=h^{\prime}(L(G))$

3. there are

- an alphabet Y,
- a recognizable language R over $Y \cup \bar{Y}$, and
- an alphabetic morphism $h: Y \cup \bar{Y} \rightarrow K^{\sum \cup\{\varepsilon\}}$
such that $L=h^{\prime}(D(Y) \cap R)$

Theorem [Droste, Vogler 13]
Let $L: \Sigma^{*} \rightarrow K$ and $(K,+$, val, 0,1$)$ unital val. monoid.
The following are equivalent:

1. L is quantitative CF language
2. there are

- an alphabet Y,
- a recognizable language R over $Y \cup \bar{Y}$, and
- an alphabetic morphism $h: Y \cup \bar{Y} \rightarrow K^{\sum \cup\{\varepsilon\}}$ such that $L=h^{\prime}(D(Y) \cap R)$

4. there are

- an alphabet Y,
- a deterministically recognizable series $r \in K^{(Y \cup \bar{Y})^{*}}$, and
- an alphabetic morphism $h: Y \cup \bar{Y} \rightarrow \Sigma \cup\{\varepsilon\}$
such that $L=h^{\prime}(D(Y) \cap r)$
$(D(Y) \cap r) \in K^{(Y \cup \bar{Y})^{*}} \quad w \mapsto \begin{cases}(r, w) & \text { if } w \in D(Y) \\ 0 & \text { otherwise }\end{cases}$

