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> input/output product
» Bar-Hillel, Shamir, Perles ;

for wta and wsa
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no survey on SMT!
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given:
» source language SL
> target language TL

find:
translation h:SL — TL

e.g.
SL = English s = | saw the man with the telescope
TL = German  h(s) = Ich sah den Mann durch das Tel.
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given:
> source language SL
> target language TL

find:
machine translation h:SL — TL

e.g.
SL = English s = | saw the man with the telescope
TL = German  h(s) = Ich sah den Mann durch das Tel.

machine translation ~ statistical machine translation

[Lopez 08]: “SMT treats the translation
of natural languages as a
machine learning problem.”
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assumptions: mental work, experience, no data
hypothesis space: H C {h| h: SL — TL}

> H and training data — — hen

[Lopez 08]: “By examining many samples
of human-produced translations,
SMT algorithms automatically
learn how to translate.”
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» assumptions — | modelling | — H hypothesis space

assumptions: mental work, experience, no data
hypothesis space: H C {h| h: SL — TL}

> H and training data — — hen

h = argmin,_y,L(h,d), loss function L: H x D — R

» hand test data — —  score

BLEU (bilingual evaluation understanding), WER (word error rate),
TER (translation error rate)
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first assumption:
SL and TL are generated by

probabilistic context-free (cf) grammars

8/30



first assumption:

S

NP
NP
NP

PP

NP : noun phrase,

L Ll
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Theorem [Thatcher 67]

> Let G be a cf grammar. Dg is a recognizable tree language.

9/30



Theorem [Thatcher 67]
> Let G be a cf grammar. Dg is a recognizable tree language.

» Let L be a recognizable tree language.
There is a cf grammar G and a relabeling f s.t. L = f(Dg).

9/30



Theorem [Thatcher 67]
> Let G be a cf grammar. Dg is a recognizable tree language.

» Let L be a recognizable tree language.
There is a cf grammar G and a relabeling f s.t. L = f(Dg).

consider L = {5(5(a), S(b))}

9/30



Theorem [Thatcher 67]
> Let G be a cf grammar. Dg is a recognizable tree language.

» Let L be a recognizable tree language.
There is a cf grammar G and a relabeling f s.t. L = f(Dg).

consider L = {5(5(a), S(b))}

» L is a recognizable tree language

9/30



Theorem [Thatcher 67]
> Let G be a cf grammar. Dg is a recognizable tree language.

» Let L be a recognizable tree language.
There is a cf grammar G and a relabeling f s.t. L = f(Dg).

consider L = {5(5(a), S(b))}
» L is a recognizable tree language

> there is no cf grammar G s.t. Dg =L

9/30



Theorem [Thatcher 67]
> Let G be a cf grammar. Dg is a recognizable tree language.

» Let L be a recognizable tree language.
There is a cf grammar G and a relabeling f s.t. L = f(Dg).

consider L = {5(5(a), S(b))} S—SSrulein g

» L is a recognizable tree language

> there is no cf grammar G s.t. Dg =L

9/30



Theorem [Thatcher 67]
> Let G be a cf grammar. Dg is a recognizable tree language.

» Let L be a recognizable tree language.
There is a cf grammar G and a relabeling f s.t. L = f(Dg).

consider L = {5(5(a), S(b))} S—SSrulein g

» L is a recognizable tree language
> there is no cf grammar G s.t. Dg =L

» cf grammar G”:

S = S,S, £(S.) =f(Sp) =S
S, — a
f;b — b

9/30



Theorem [Thatcher 67]

> Let G be a cf grammar. Dg is a recognizable tree language.

» Let L be a recognizable tree language.

There is a cf grammar G and a relabeling f s.t. L = f(Dg).

consider L = {5(5(a), S(b))} S—SSrulein g
» L is a recognizable tree language
> there is no cf grammar G s.t. Dg =L

» cf grammar G”:

S — S)S £(S)) = f(Sp) = S
S, — a
f;b — b

recognizable tree languages are closed under relabelings.
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first assumption:
SL and TL are generated by

probabilistic context-free (cf) grammars

refined first assumption:

SL and TL are the yields of
weighted recognizable tree languages

weighted tree language: L: Ty — R

L is recognizable:
if there is a wta A

which “recognizes’ (computes) L
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o: label of £ at w
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weighted tree language recognized by A:
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second assumption:
translation from SL and TL is specified by

a weighted tree transducer

[Yamada, Knight 01] translation from English to Japanese
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» @, X as for wta 3 : input and output symbols

> qo € Q (initial state)
> R finite set of particular term rewrite rules with weights

p: qlo(xt,...,xk)) = &lgi(x1), ..., q(xx)] # a

(leftmost) derivation: d=pi-pn
weight of a derivation d: wt(d) =[], wt(pi)

weighted tree transformation computed by M:

TM - Tz X Tz — R, TM(fl,fg) = maxXx Wt(d)
deDg:
Dy: set of all derivations m(d)=(&1,62)

13/30



modelling with wtt and wta:

» model for translation from SL to TL: wtt M
» model for TL: wta A

14/30



modelling with wtt and wta:

» model for translation from SL to TL: wtt M
» model for TL: wta A

se SL teTl

14/30



modelling with wtt and wta:

» model for translation from SL to TL: wtt M
» model for TL: wta A

correspondence structure:
[Liang et al. 06]

T
/TTSL \ L

se SL teTl

14/30



modelling with wtt and wta:

» model for translation from SL to TL: wtt M
» model for TL: wta A

correspondence structure:
[Liang et al. 06]

se SL teTl

14/30



modelling with wtt and wta:

» model for translation from SL to TL: wtt M
» model for TL: wta A

correspondence structure:
[Liang et al. 06]

se SL teTl

14/30



modelling with wtt and wta:

» model for translation from SL to TL: wtt M

» model for TL:

wta A

teTl

correspondence structure:
[Liang et al. 06]

Y ={(d,r) € Dapy X R |
r € Ry(last(d))}

msi(d, r) = yield(first(d))
mr(d, r) = yield(last(d))
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modelling with wtt and wta:

» model for translation from SL to TL: wtt M
» model for TL: wta A

correspondence structure:
[Liang et al. 06]

T ¥ ,
SAKQ_,_;j é + eR (3D

Y ={(d,r) € Dpm x R4 |

/@L N r € Ra(last(d))}
msi(d, r) = yield(first(d))
seSL teTl mr(d, r) = yield(last(d))

hypothesis space:  H = {hap,.4 | wtt M, wta A}
h/\/LA . SL—TL

S+ TTL <argmax (d,r)ey: wt(d)- Wt(r))

msL(d,r)=s
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let 7:TgxTy—>R and L: Ty >R
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output product of 7 and L:

input product of L and 7:

7> L: Ty x Ty - R

Lar:Tsx Ty - R
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Theorem [Maletti 06]: Let M wtt and A wta.
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Theorem [Maletti 06]: Let M wtt and A wta.
There is a wtt M > A such that: Ty =70 > Lg

Proof: [Baker 79, Engelfriet, Fiilop,V. 02]

rule of M: q
o —
PN
xXa Ky
states of A:  p, p1, p2
rule of M > A:
ap
.
RN
Xa Ko

/U\
o # a
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a1 ﬁll
| X

A

o
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o . Wi, )
PARN .*F a X )
Q1 P4 ql PL N e? ( o P >
| | AN TN
I3 Xy <2
Pa P

A
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¢: Dy — {(d,p) | d € Dam, p € RE™¥(d)} bijection
Wt(dl) = Wt(d) MaXyecompletion(p) Wt(r)
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generalization to mildly context-sensitive languages

Theorem [Biichse, Nederhof, V. 11]:

Let M synchronized tree-adjoining grammar (STAG)
and A wta.

There is an STAG M > A such that: Tapa = 7A > Lg

Theorem [Nederhof, V. 12]:

Let M synchronized context-free tree grammar (SCFTG)
and A wta.

There is an SCFTG M > A such that: 7apa =70 > Lg
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outline of the talk:

>

Statistical machine translation
(modelling, training, evaluation)

Modelling with wta and wtt
Using output product to improve modelling

Using Bar-Hillel, Shamir, Perles and input product
to improve decoding

Software system VANDA
(M. Biichse, T. Dietze, J. Osterholzer)

21/30



decoding:
given:  hpyg4:SL—TL and seSL

compute:  hpg a(s) = 71, (argmaxdeDMDA; wt(d))
WSL(d):S
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given: ranked alphabet ¥ and s =a;---a,

construct: wta As such that for every £ € Ty

1 ifyield(§) =s
0 otherwise

Lo = {

idea:
L
5
_L/ \
o <y
-

/// \\\\‘<7'L ///,/ \\\\\

VAN
&) (22) 4 (44) (£3)

o A oA b a

S = Qa c b a

1 2 3 G r

Theorem [Bar-Hillel, Shamir, Perles 61]
The class of cf languages is closed under intersection with
regular languages.
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recall:
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recall:

Algorithm:

» apply input product to wta Ag and wtt M > A resulting in
wtt As < (M > A)

» apply Knuth's algorithm to As < (M > A) resulting in the
derivation with maximal weight.
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wtt M= As < (M > A)

a (ons
[% I N H# 038
o @ 4
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wtt M’ = As < (M > A) hypergraph G(M")
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wtt M= As < (M > A) hypergraph G(M")

X _ @/@

[ I -/ \{ #0338
/Od\ (311 PALIRN % : [0173 xTo1) — [o1])
a 2 X4 & Qo F f
\ ((‘"m“"L) = ML M, - 0¥
><'l_
IS g-r('vx,“'vxl] < A (M,llML)
L4 %S’ mowotone
hypergraph Knuth's
— . — argmax W d
G(M) algorithm SMAXdeD wm(d)

[Knuth 77] A generalization of Dijkstra's shortest path algorithm
O(|E] - log| V)
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statistical machine translation of natural languages
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but: SMT is an engineering task!
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