Recognizable Weighted Tree Languages A Survey

Heiko Vogler
Technische Universität Dresden

ATANLP 2012
Avignon, April 24, 2012

Recognizable Weighted Tree Languages A Survey

Heiko Vogler
Technische Universität Dresden

ATANLP 2012
Avignon, April 24, 2012
outline of my talk:

- from finite-state tree automata to weighted tree automata

Σ : ranked alphabet

$$
\Sigma=\left\{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\right\}
$$

Σ : ranked alphabet
T_{Σ} : set of trees over Σ

$$
\begin{gathered}
\Sigma=\left\{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\right\} \\
\sigma(\gamma(\alpha), \sigma(\gamma(\alpha), \alpha))
\end{gathered}
$$

Σ : ranked alphabet
$\Sigma=\left\{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\right\}$
T_{Σ} : set of trees over Σ
$\sigma(\gamma(\alpha), \sigma(\gamma(\alpha), \alpha))$
$\operatorname{pos}(\xi)$: set of positions of $\xi \quad \operatorname{pos}(\xi)=\{\varepsilon, 1,11,2,21,211,22\}$

Σ : ranked alphabet

$$
\begin{gathered}
\Sigma=\left\{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\right\} \\
\sigma(\gamma(\alpha), \sigma(\gamma(\alpha), \alpha))
\end{gathered}
$$

T_{Σ} : set of trees over Σ
$\operatorname{pos}(\xi)$: set of positions of $\xi \quad \operatorname{pos}(\xi)=\{\varepsilon, 1,11,2,21,211,22\}$
$\xi(w)$: label of ξ at position $w \in \operatorname{pos}(\xi)$

$$
\xi(21)=\gamma
$$

tree language $L \subseteq T_{\Sigma}$
tree language $L \subseteq T_{\Sigma}$
fta $\mathcal{A}=(Q, \Sigma, \delta, F)$
$\delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q$
$\left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta$
$F \subseteq Q$
tree language $L \subseteq T_{\Sigma}$

$$
\begin{aligned}
& \text { fra } \mathcal{A}=(Q, \Sigma, \delta, F) \\
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree language $L \subseteq T_{\Sigma}$

$$
\begin{aligned}
& \text { fta } \mathcal{A}=(Q, \Sigma, \delta, F) \\
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree lang. recognized by \mathcal{A} : $\xi \in L_{\mathcal{A}}$ eff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t. κ is δ-comp. and $\kappa(\varepsilon) \in F$

tree language $L \subseteq T_{\Sigma}$

$$
\begin{aligned}
& \mathrm{fta} \mathcal{A}=(Q, \Sigma, \delta, F) \\
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma(k) \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree lang. recognized by \mathcal{A} : $\xi \in L_{\mathcal{A}}$ iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if \exists fta \mathcal{A} with $L=L_{\mathcal{A}}$
tree language $L \subseteq T_{\Sigma} \quad L$ set of all trees in which $\sigma(., \alpha)$ occurs

$$
\begin{aligned}
& \text { fta } \mathcal{A}=(Q, \Sigma, \delta, F) \\
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree lang. recognized by \mathcal{A} : $\xi \in L_{\mathcal{A}}$ eff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if \exists fa \mathcal{A} with $L=L_{\mathcal{A}}$

tree language $L \subseteq T_{\Sigma} \quad L$ set of all trees in which $\sigma(., \alpha)$ occurs
fla $\mathcal{A}=(Q, \Sigma, \delta, F)$

$$
\begin{align*}
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \tag{9}\\
& F \subseteq Q
\end{align*}
$$

tree lang. recognized by \mathcal{A} :
α $\xi \in L_{\mathcal{A}}$ iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if \exists fa \mathcal{A} with $L=L_{\mathcal{A}}$

tree language $L \subseteq T_{\Sigma} \quad L$ set of all trees in which $\sigma(., \alpha)$ occurs
fla $\mathcal{A}=(Q, \Sigma, \delta, F)$

$$
\begin{align*}
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{align*}
$$

tree lang. recognized by \mathcal{A} :
$\alpha \rightarrow \infty$ $\xi \in L_{\mathcal{A}}$ iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if \exists fa \mathcal{A} with $L=L_{\mathcal{A}}$

tree language $L \subseteq T_{\Sigma}$
fa $\mathcal{A}=(Q, \Sigma, \delta, F)$

$$
\begin{aligned}
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree lang. recognized by \mathcal{A} : $\xi \in L_{\mathcal{A}}$ iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if $\exists \mathrm{fta} \mathcal{A}$ with $L=L_{\mathcal{A}}$
L set of all trees in which $\sigma(., \alpha)$ occurs

$\alpha \rightarrow(\alpha$

tree language $L \subseteq T_{\Sigma}$
fa $\mathcal{A}=(Q, \Sigma, \delta, F)$

$$
\begin{aligned}
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree lang. recognized by \mathcal{A} : $\xi \in L_{\mathcal{A}}$ iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if $\exists \mathrm{fta} \mathcal{A}$ with $L=L_{\mathcal{A}}$
L set of all trees in which $\sigma(., \alpha)$ occurs

$\alpha \rightarrow \alpha$

tree language $L \subseteq T_{\Sigma}$
fra $\mathcal{A}=(Q, \Sigma, \delta, F)$

$$
\begin{aligned}
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree lang. recognized by \mathcal{A} : $\xi \in L_{\mathcal{A}}$ iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if $\exists \mathrm{fta} \mathcal{A}$ with $L=L_{\mathcal{A}}$
L set of all trees in which $\sigma(., \alpha)$ occurs

tree language $L \subseteq T_{\Sigma}$
fra $\mathcal{A}=(Q, \Sigma, \delta, F)$

$$
\begin{aligned}
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree lang. recognized by \mathcal{A} : $\xi \in L_{\mathcal{A}}$ iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if $\exists \mathrm{fta} \mathcal{A}$ with $L=L_{\mathcal{A}}$
L set of all trees in which $\sigma(., \alpha)$ occurs

tree language $L \subseteq T_{\Sigma}$
fra $\mathcal{A}=(Q, \Sigma, \delta, F)$

$$
\begin{aligned}
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree lang. recognized by \mathcal{A} : $\xi \in L_{\mathcal{A}}$ iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if $\exists \mathrm{fta} \mathcal{A}$ with $L=L_{\mathcal{A}}$
L set of all trees in which $\sigma(., \alpha)$ occurs

tree language $L \subseteq T_{\Sigma}$
fra $\mathcal{A}=(Q, \Sigma, \delta, F)$

$$
\begin{aligned}
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree lang. recognized by \mathcal{A} : $\xi \in L_{\mathcal{A}}$ iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if $\exists \mathrm{fta} \mathcal{A}$ with $L=L_{\mathcal{A}}$
L set of all trees in which $\sigma(., \alpha)$ occurs

$$
(q f, \sigma, \bar{\alpha}) \notin \delta
$$

not δ-compatible
tree language $L \subseteq T_{\Sigma}$
fa $\mathcal{A}=(Q, \Sigma, \delta, F)$

$$
\begin{aligned}
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree lang. recognized by \mathcal{A} : $\xi \in L_{\mathcal{A}}$ iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if $\exists \mathrm{fta} \mathcal{A}$ with $L=L_{\mathcal{A}}$
L set of all trees in which $\sigma(., \alpha)$ occurs

tree language $L \subseteq T_{\Sigma}$
fra $\mathcal{A}=(Q, \Sigma, \delta, F)$

$$
\begin{aligned}
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree lang. recognized by \mathcal{A} : $\xi \in L_{\mathcal{A}}$ iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ st. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if $\exists \mathrm{fta} \mathcal{A}$ with $L=L_{\mathcal{A}}$
L set of all trees in which $\sigma(., \alpha)$ occurs

tree language $L \subseteq T_{\Sigma}$
fra $\mathcal{A}=(Q, \Sigma, \delta, F)$

$$
\begin{aligned}
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree lang. recognized by \mathcal{A} : $\xi \in L_{\mathcal{A}}$ iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if $\exists \mathrm{fta} \mathcal{A}$ with $L=L_{\mathcal{A}}$
L set of all trees in which $\sigma(., \alpha)$ occurs

tree language $L \subseteq T_{\Sigma}$
fra $\mathcal{A}=(Q, \Sigma, \delta, F)$

$$
\begin{aligned}
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree lang. recognized by \mathcal{A} : $\xi \in L_{\mathcal{A}}$ iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if $\exists \mathrm{fta} \mathcal{A}$ with $L=L_{\mathcal{A}}$
L set of all trees in which $\sigma(., \alpha)$ occurs

tree language $L \subseteq T_{\Sigma}$
fa $\mathcal{A}=(Q, \Sigma, \delta, F)$

$$
\begin{aligned}
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree lang. recognized by \mathcal{A} : $\xi \in L_{\mathcal{A}}$ iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ st. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if $\exists \mathrm{fta} \mathcal{A}$ with $L=L_{\mathcal{A}}$
L set of all trees in which $\sigma(., \alpha)$ occurs

tree language $L \subseteq T_{\Sigma}$
fa $\mathcal{A}=(Q, \Sigma, \delta, F)$

$$
\begin{aligned}
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree lang. recognized by \mathcal{A} : $\xi \in L_{\mathcal{A}}$ iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ st. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if $\exists \mathrm{fta} \mathcal{A}$ with $L=L_{\mathcal{A}}$
L set of all trees in which $\sigma(., \alpha)$ occurs

tree language $L \subseteq T_{\Sigma}$
fra $\mathcal{A}=(Q, \Sigma, \delta, F)$

$$
\begin{aligned}
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree lang. recognized by \mathcal{A} : $\xi \in L_{\mathcal{A}}$ iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if \exists fa \mathcal{A} with $L=L_{\mathcal{A}}$
L set of all trees in which $\sigma(., \alpha)$ occurs

tree language $L \subseteq T_{\Sigma}$
fra $\mathcal{A}=(Q, \Sigma, \delta, F)$

$$
\begin{aligned}
& \delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \\
& \left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta \\
& F \subseteq Q
\end{aligned}
$$

tree lang. recognized by \mathcal{A} : $\xi \in L_{\mathcal{A}}$ iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t. κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if $\exists \mathrm{fta} \mathcal{A}$ with $L=L_{\mathcal{A}}$
L set of all trees in which $\sigma(., \alpha)$ occurs

tree language $L \subseteq T_{\Sigma}$
fta $\mathcal{A}=(Q, \Sigma, \delta, F)$
$\delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q$
$\left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta$
$F \subseteq Q$
tree lang. recognized by \mathcal{A} :
$\xi \in L_{\mathcal{A}}$ iff
there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t.
κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if \exists fta \mathcal{A} with $L=L_{\mathcal{A}}$
tree language $L \subseteq T_{\Sigma}$
fta $\mathcal{A}=(Q, \Sigma, \delta, F)$
$\delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q$
$\left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta$
$F \subseteq Q$
tree lang. recognized by \mathcal{A} :
$\xi \in L_{\mathcal{A}}$ iff
there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t.
κ is δ-comp. and $\kappa(\varepsilon) \in F$
there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t.
κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if $\exists \mathrm{fta} \mathcal{A}$ with $L=L_{\mathcal{A}}$
\mathbb{B}-weighted tree lang. $L: T_{\Sigma} \rightarrow \mathbb{B}$
tree language $L \subseteq T_{\Sigma}$
fta $\mathcal{A}=(Q, \Sigma, \delta, F)$
$\delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q$
$\left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta$
$F \subseteq Q$
\mathbb{B}-weighted tree lang. $L: T_{\Sigma} \rightarrow \mathbb{B}$
\mathbb{B}-wta $\mathcal{A}=(Q, \Sigma, \delta, F)$
$\delta: \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \rightarrow \mathbb{B}$
$\delta\left(q_{1} \ldots q_{k}, \sigma, q\right)=t t$
$F: Q \rightarrow \mathbb{B}$
tree lang. recognized by \mathcal{A} :
$\xi \in L_{\mathcal{A}}$ iff
there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t.
κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if \exists fta \mathcal{A} with $L=L_{\mathcal{A}}$
tree language $L \subseteq T_{\Sigma}$
fta $\mathcal{A}=(Q, \Sigma, \delta, F)$
$\delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q$
$\left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta$
$F \subseteq Q$
tree lang. recognized by \mathcal{A} :
$\xi \in L_{\mathcal{A}}$ iff
there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t. $\quad \operatorname{comp}(\kappa)=$
κ is δ-comp. and $\kappa(\varepsilon) \in F \quad \delta(\varepsilon, \alpha, q) \wedge \delta(\varepsilon, \alpha, \bar{\alpha}) \wedge \ldots$
tree lang. L is recognizable if \exists fta \mathcal{A} with $L=L_{\mathcal{A}}$
\mathbb{B}-weighted tree lang. $L: T_{\Sigma} \rightarrow \mathbb{B}$
\mathbb{B}-wta $\mathcal{A}=(Q, \Sigma, \delta, F)$
$\delta: \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \rightarrow \mathbb{B}$
$\delta\left(q_{1} \ldots q_{k}, \sigma, q\right)=t t$
$F: Q \rightarrow \mathbb{B}$
\mathbb{B}-weighted tree lang. recogn. by \mathcal{A} $L_{\mathcal{A}}(\xi)=\bigvee_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\operatorname{comp}(\kappa) \wedge F(\kappa(\varepsilon)))$
tree language $L \subseteq T_{\Sigma}$
fta $\mathcal{A}=(Q, \Sigma, \delta, F)$
$\delta \subseteq \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q$
$\left(q_{1} \ldots q_{k}, \sigma, q\right) \in \delta$
$F \subseteq Q$
tree lang. recognized by \mathcal{A} :
$\xi \in L_{\mathcal{A}}$ iff
there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ s.t.
κ is δ-comp. and $\kappa(\varepsilon) \in F$
tree lang. L is recognizable if \exists fta \mathcal{A} with $L=L_{\mathcal{A}}$
\mathbb{B}-weighted tree lang. $L: T_{\Sigma} \rightarrow \mathbb{B}$
\mathbb{B}-wta $\mathcal{A}=(Q, \Sigma, \delta, F)$
$\delta: \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \rightarrow \mathbb{B}$
$\delta\left(q_{1} \ldots q_{k}, \sigma, q\right)=t t$
$F: Q \rightarrow \mathbb{B}$
\mathbb{B}-weighted tree lang. recogn. by \mathcal{A} $L_{\mathcal{A}}(\xi)=\bigvee_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\operatorname{comp}(\kappa) \wedge F(\kappa(\varepsilon)))$ $\operatorname{comp}(\kappa)=$
$\delta(\varepsilon, \alpha, q) \wedge \delta(\varepsilon, \alpha, \bar{\alpha}) \wedge \ldots$
\mathbb{B}-weighted tree lang. L is \mathbb{B}-recogn. if $\exists \mathbb{B}$-wta \mathcal{A} with $L=L_{\mathcal{A}}$
\mathbb{B}-weighted tree lang. $L: T_{\Sigma} \rightarrow \mathbb{B}$
\mathbb{B}-wta $\mathcal{A}=(Q, \Sigma, \delta, F)$
$\delta: \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \rightarrow \mathbb{B}$
$\delta\left(q_{1} \ldots q_{k}, \sigma, q\right)=t t$
$F: Q \rightarrow \mathbb{B}$
\mathbb{B}-weighted tree lang. recogn. by \mathcal{A} $L_{\mathcal{A}}(\xi)=\bigvee_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\operatorname{comp}(\kappa) \wedge F(\kappa(\varepsilon)))$
$\operatorname{comp}(\kappa)=$
$\delta(\varepsilon, \alpha, q) \wedge \delta(\varepsilon, \alpha, \bar{\alpha}) \wedge \ldots$
\mathbb{B}-weighted tree lang. L is \mathbb{B}-recogn. if $\exists \mathbb{B}$-wta \mathcal{A} with $L=L_{\mathcal{A}}$
\mathbb{B}-weighted tree lang. $L: T_{\Sigma} \rightarrow \mathbb{B}$

$$
\begin{aligned}
& \mathbb{B} \text {-wta } \mathcal{A}=(Q, \Sigma, \delta, F) \\
& \delta: \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \rightarrow \mathbb{B} \\
& \delta\left(q_{1} \ldots q_{k}, \sigma, q\right)=t t \\
& F: Q \rightarrow \mathbb{B}
\end{aligned}
$$

\mathbb{B}-weighted tree lang. recogn. by \mathcal{A}

$$
\begin{aligned}
& L_{\mathcal{A}}(\xi)=\underset{\kappa: \operatorname{pos}(\xi) \rightarrow Q}{\bigvee^{\operatorname{comp}}(\kappa)}= \\
& \delta(\varepsilon, \alpha, q) \wedge \delta(\varepsilon, \alpha, \bar{\alpha}) \wedge \ldots
\end{aligned}
$$

\mathbb{B}-weighted tree lang. L is \mathbb{B}-recogn. if $\exists \mathbb{B}$-wta \mathcal{A} with $L=L_{\mathcal{A}}$
\mathbb{B}-weighted tree lang. $L: T_{\Sigma} \rightarrow \mathbb{B}$

$$
\begin{aligned}
& \mathbb{B} \text {-wta } \mathcal{A}=(Q, \Sigma, \delta, F) \\
& \delta: \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \rightarrow \mathbb{B} \\
& \delta\left(q_{1} \ldots q_{k}, \sigma, q\right)=t t \\
& F: Q \rightarrow \mathbb{B}
\end{aligned}
$$

$(\mathbb{B}, \vee, \wedge) \rightsquigarrow(\mathbb{N},+, \cdot)$
δ-compatible $\rightsquigarrow \mathrm{wt}$
\mathbb{B}-weighted tree lang. recogn. by \mathcal{A}

$$
\begin{aligned}
& L_{\mathcal{A}}(\xi)=\underset{\kappa: \operatorname{pos}(\xi) \rightarrow Q}{\bigvee^{\prime}}(\operatorname{comp}(\kappa) \wedge F(\kappa(\varepsilon))) \\
& \operatorname{comp}(\kappa)= \\
& \delta(\varepsilon, \alpha, q) \wedge \delta(\varepsilon, \alpha, \bar{\alpha}) \wedge \ldots
\end{aligned}
$$

\mathbb{B}-weighted tree lang. L is \mathbb{B}-recogn. if $\exists \mathbb{B}$-wta \mathcal{A} with $L=L_{\mathcal{A}}$
\mathbb{N}-weighted tree lang. $L: T_{\Sigma} \rightarrow \mathbb{N}$

$$
\begin{aligned}
& \mathbb{N} \text {-wta } \mathcal{A}=(Q, \Sigma, \delta, F) \\
& \delta: \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \rightarrow \mathbb{N} \\
& \delta\left(q_{1} \ldots q_{k}, \sigma, q\right)=n \\
& F: Q \rightarrow \mathbb{N}
\end{aligned}
$$

$(\mathbb{B}, \vee, \wedge) \rightsquigarrow(\mathbb{N},+, \cdot)$
δ-compatible $\rightsquigarrow \mathrm{wt}$
\mathbb{N}-weighted tree lang. recogn. by \mathcal{A} $L_{\mathcal{A}}(\xi)=\sum_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\operatorname{wt}(\kappa) \cdot F(\kappa(\varepsilon)))$
$\mathrm{wt}(\kappa)=$
$\delta(\varepsilon, \alpha, q) \cdot \delta(\varepsilon, \alpha, \bar{\alpha}) \cdot \ldots$
\mathbb{N}-weighted tree lang. L is \mathbb{N}-recogn. if $\exists \mathbb{N}$-wta \mathcal{A} with $L=L_{\mathcal{A}}$

Example: $\quad \mathbb{N}$-wta $\mathcal{A}=\left(Q, \Sigma, \delta^{\prime}, F\right)$ with

Example: $\quad \mathbb{N}$-wta $\mathcal{A}=\left(Q, \Sigma, \delta^{\prime}, F\right)$ with

- $Q=\{q, \bar{\alpha}, f\}$,

Example: $\quad \mathbb{N}$-wta $\mathcal{A}=\left(Q, \Sigma, \delta^{\prime}, F\right)$ with

- $Q=\{q, \bar{\alpha}, f\}$,
- $F: Q \rightarrow \mathbb{N}$ with $F(f)=1$ and $F(q)=F(\bar{\alpha})=0$

Example: $\quad \mathbb{N}$-wta $\mathcal{A}=\left(Q, \Sigma, \delta^{\prime}, F\right)$ with

- $Q=\{q, \bar{\alpha}, f\}$,
- $F: Q \rightarrow \mathbb{N}$ with $F(f)=1$ and $F(q)=F(\bar{\alpha})=0$
- $\delta^{\prime}=\chi_{\delta}$ with $\delta=$

Example: $\quad \mathbb{N}$-wta $\mathcal{A}=\left(Q, \Sigma, \delta^{\prime}, F\right)$ with

- $Q=\{q, \bar{\alpha}, f\}$,
- $F: Q \rightarrow \mathbb{N}$ with $F(f)=1$ and $F(q)=F(\bar{\alpha})=0$
- $\delta^{\prime}=\chi_{\delta}$ with $\delta=$

$$
L_{\mathcal{A}}(\xi)=\sum_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\mathrm{wt}(\kappa) \cdot F(\kappa(\varepsilon)))
$$

Example: $\quad \mathbb{N}$-wta $\mathcal{A}=\left(Q, \Sigma, \delta^{\prime}, F\right)$ with

- $Q=\{q, \bar{\alpha}, f\}$,
- $F: Q \rightarrow \mathbb{N}$ with $F(f)=1$ and $F(q)=F(\bar{\alpha})=0$
- $\delta^{\prime}=\chi_{\delta}$ with $\delta=$

$$
L_{\mathcal{A}}(\xi)=\operatorname{wt}\left(\kappa_{1}\right) \cdot F(q)+\ldots
$$

Example: $\quad \mathbb{N}$-wta $\mathcal{A}=\left(Q, \Sigma, \delta^{\prime}, F\right)$ with

- $Q=\{q, \bar{\alpha}, f\}$,
- $F: Q \rightarrow \mathbb{N}$ with $F(f)=1$ and $F(q)=F(\bar{\alpha})=0$
- $\delta^{\prime}=\chi_{\delta}$ with $\delta=$

$L_{\mathcal{A}}(\xi)=0+\ldots$

Example: $\quad \mathbb{N}$-wta $\mathcal{A}=\left(Q, \Sigma, \delta^{\prime}, F\right)$ with

- $Q=\{q, \bar{\alpha}, f\}$,
- $F: Q \rightarrow \mathbb{N}$ with $F(f)=1$ and $F(q)=F(\bar{\alpha})=0$
- $\delta^{\prime}=\chi_{\delta}$ with $\delta=$

$L_{\mathcal{A}}(\xi)=0+\mathrm{wt}\left(\kappa_{2}\right) \cdot F(f)+\ldots$

Example: $\quad \mathbb{N}$-wta $\mathcal{A}=\left(Q, \Sigma, \delta^{\prime}, F\right)$ with

- $Q=\{q, \bar{\alpha}, f\}$,
- $F: Q \rightarrow \mathbb{N}$ with $F(f)=1$ and $F(q)=F(\bar{\alpha})=0$
- $\delta^{\prime}=\chi_{\delta}$ with $\delta=$

$L_{\mathcal{A}}(\xi)=0+1+\ldots$

Example: $\quad \mathbb{N}$-wta $\mathcal{A}=\left(Q, \Sigma, \delta^{\prime}, F\right)$ with

- $Q=\{q, \bar{\alpha}, f\}$,
- $F: Q \rightarrow \mathbb{N}$ with $F(f)=1$ and $F(q)=F(\bar{\alpha})=0$
- $\delta^{\prime}=\chi_{\delta}$ with $\delta=$

$L_{\mathcal{A}}(\xi)=0+1+\operatorname{wt}\left(\kappa_{3}\right) \cdot F(f)+.$.

Example: $\quad \mathbb{N}$-wta $\mathcal{A}=\left(Q, \Sigma, \delta^{\prime}, F\right)$ with

- $Q=\{q, \bar{\alpha}, f\}$,
- $F: Q \rightarrow \mathbb{N}$ with $F(f)=1$ and $F(q)=F(\bar{\alpha})=0$
- $\delta^{\prime}=\chi_{\delta}$ with $\delta=$

$L_{\mathcal{A}}(\xi)=0+1+1+\ldots$

Example: $\quad \mathbb{N}$-wta $\mathcal{A}=\left(Q, \Sigma, \delta^{\prime}, F\right)$ with

- $Q=\{q, \bar{\alpha}, f\}$,
- $F: Q \rightarrow \mathbb{N}$ with $F(f)=1$ and $F(q)=F(\bar{\alpha})=0$
- $\delta^{\prime}=\chi_{\delta}$ with $\delta=$

$L_{\mathcal{A}}(\xi)=0+1+1+0+\ldots+0=2$
$L_{\mathcal{A}}(\xi)=\#$ occurrences of $\sigma(., \alpha)$ in ξ

\mathbb{N}-weighted tree lang. $L: T_{\Sigma} \rightarrow \mathbb{N}$
\mathbb{N}-wta $\mathcal{A}=(Q, \Sigma, \delta, F)$
$\delta: \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \rightarrow \mathbb{N}$
$\delta\left(q_{1} \ldots q_{k}, \sigma, q\right)=n$
$F: Q \rightarrow \mathbb{N}$
\mathbb{N}-weighted tree lang. recogn. by \mathcal{A} $L_{\mathcal{A}}(\xi)=\sum_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\operatorname{wt}(\kappa) \cdot F(\kappa(\varepsilon)))$
$\mathrm{wt}(\kappa)=$
$\delta(\varepsilon, \alpha, q) \cdot \delta(\varepsilon, \alpha, \bar{\alpha}) \cdot \ldots$
\mathbb{N}-weighted tree lang. L is \mathbb{N}-recogn. if $\exists \mathbb{N}$-wta \mathcal{A} with $L=L_{\mathcal{A}}$
\mathbb{N}-weighted tree lang. $L: T_{\Sigma} \rightarrow \mathbb{N}$

$$
\begin{aligned}
& \mathbb{N} \text {-wta } \mathcal{A}=(Q, \Sigma, \delta, F) \\
& \delta: \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \rightarrow \mathbb{N} \\
& \delta\left(q_{1} \ldots q_{k}, \sigma, q\right)=n \\
& F: Q \rightarrow \mathbb{N}
\end{aligned}
$$

$(\mathbb{N},+, \cdot) \rightsquigarrow(\mathbb{S}, \oplus, \odot)$
\mathbb{N}-weighted tree lang. recogn. by \mathcal{A} $L_{\mathcal{A}}(\xi)=\sum_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\operatorname{wt}(\kappa) \cdot F(\kappa(\varepsilon)))$
$\mathrm{wt}(\kappa)=$
$\delta(\varepsilon, \alpha, q) \cdot \delta(\varepsilon, \alpha, \bar{\alpha}) \cdot \ldots$
\mathbb{N}-weighted tree lang. L is \mathbb{N}-recogn. if $\exists \mathbb{N}$-wta \mathcal{A} with $L=L_{\mathcal{A}}$
\mathbb{S}-weighted tree lang. $L: T_{\Sigma} \rightarrow \mathbb{S}$

$$
\begin{aligned}
& \mathbb{S}-\text { wta } \mathcal{A}=(Q, \Sigma, \delta, F) \\
& \delta: \bigcup_{k \in \mathbb{N}} Q^{k} \times \Sigma^{(k)} \times Q \rightarrow \mathbb{S} \\
& \delta\left(q_{1} \ldots q_{k}, \sigma, q\right)=s \\
& F: Q \rightarrow \mathbb{S}
\end{aligned}
$$

$(\mathbb{N},+, \cdot) \rightsquigarrow(\mathbb{S}, \oplus, \odot)$
calculation of \odot depth-first left-to-right
\mathbb{S}-weighted tree lang. recogn. by \mathcal{A} $L_{\mathcal{A}}(\xi)=\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\operatorname{wt}(\kappa) \odot F(\kappa(\varepsilon)))$
$\mathrm{wt}(\kappa)=$
$\delta(\varepsilon, \alpha, q) \odot \delta(\varepsilon, \alpha, \bar{\alpha}) \odot \ldots$
\mathbb{S}-weighted tree lang. L is \mathbb{S}-recogn. if $\exists \mathbb{S}$-wta \mathcal{A} with $L=L_{\mathcal{A}}$
$(\mathbb{S}, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring
$(\mathbb{S}, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring

- \oplus and \odot are binary, associative operations on \mathbb{S},
$(\mathbb{S}, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring
- \oplus and \odot are binary, associative operations on \mathbb{S},
- \oplus is commutative,
$(\mathbb{S}, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring
- \oplus and \odot are binary, associative operations on \mathbb{S},
- \oplus is commutative,
- $\mathbf{0}$ is neutral w.r.t. \oplus

$$
\text { (i.e., } a \oplus \mathbf{0}=a \text {), }
$$

$(\mathbb{S}, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring

- \oplus and \odot are binary, associative operations on \mathbb{S},
- \oplus is commutative,
- $\mathbf{0}$ is neutral w.r.t. \oplus
- 1 is neutral w.r.t. \odot
(i.e., $a \oplus \mathbf{0}=a$),
(i.e., $a \odot \mathbf{1}=\mathbf{1} \odot a=a$),

$(\mathbb{S}, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring

- \oplus and \odot are binary, associative operations on \mathbb{S},
- \oplus is commutative,
- $\mathbf{0}$ is neutral w.r.t. \oplus
- 1 is neutral w.r.t. \odot
- $\mathbf{0}$ is absorbing w.r.t. \odot
(i.e., $a \oplus \mathbf{0}=a$),
$(i . e ., a \odot \mathbf{1}=\mathbf{1} \odot a=a$),
(i.e., $a \odot \mathbf{0}=\mathbf{0} \odot a=\mathbf{0}$),

$(\mathbb{S}, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring

- \oplus and \odot are binary, associative operations on \mathbb{S},
- \oplus is commutative,
- $\mathbf{0}$ is neutral w.r.t. \oplus

$$
\text { (i.e., } a \oplus \mathbf{0}=a \text {), }
$$

$$
\begin{aligned}
& \text { (i.e., } a \odot \mathbf{1}=\mathbf{1} \odot a=a \text {), } \\
& \text { (i.e., } a \odot \mathbf{0}=\mathbf{0} \odot a=\mathbf{0} \text {), }
\end{aligned}
$$

- \odot distributes over \oplus

$$
\begin{aligned}
& \text { (i.e., } a \odot(b \oplus c)=(a \odot b) \oplus(a \odot c) \\
& \quad(a \odot b) \oplus c=(a \odot c) \oplus(b \odot c))
\end{aligned}
$$

$(\mathbb{S}, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring
$(\mathbb{S}, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring
Examples of semirings (s.r.):

- $(\mathbb{B}, \vee, \wedge, f f, t t)$ Boolean s.r., $\mathbb{B}=\{t t, f f\}$
- ($\mathrm{N},+, \cdot, 0,1$) natural number s.r.

$(\mathbb{S}, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring

Examples of semirings (s.r.):

- $(\mathbb{B}, \vee, \wedge, f f, t t)$ Boolean s.r., $\mathbb{B}=\{t t, f f\}$
- ($\mathrm{N},+, \cdot, 0,1$) natural number s.r.
- $(\mathbb{Z} / 4 \mathbb{Z},+, \cdot, 0,1)$ modulo 4 ring; $3+2=1,2 \cdot 2=0$.

$(\mathbb{S}, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring

Examples of semirings (s.r.):

- $(\mathbb{B}, \vee, \wedge, f f, t t)$ Boolean s.r., $\mathbb{B}=\{t t, f f\}$
- ($\mathrm{N},+, \cdot, 0,1$) natural number s.r.
- $(\mathbb{Z} / 4 \mathbb{Z},+, \cdot, 0,1)$ modulo 4 ring; $3+2=1,2 \cdot 2=0$.
- ($[0,1]$, max, $\cdot, 0,1)$ Viterbi s.r.

$(\mathbb{S}, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring

Examples of semirings (s.r.):

- $(\mathbb{B}, \vee, \wedge, f f, t t)$ Boolean s.r., $\mathbb{B}=\{t t, f f\}$
- ($\mathrm{N},+, \cdot, 0,1$) natural number s.r.
- $(\mathbb{Z} / 4 \mathbb{Z},+, \cdot, 0,1)$ modulo 4 ring; $3+2=1,2 \cdot 2=0$.
- ($[0,1]$, max, $\cdot, 0,1$) Viterbi s.r.
- $\left(\mathbb{R}_{\geq 0} \cup\{\infty\}\right.$, min $\left.,+, \infty, 0\right)$ tropical s.r. $-\log ($ Viterbi s.r. $)=$ tropical s.r.

$(\mathbb{S}, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring

Examples of semirings (s.r.):

- $(\mathbb{B}, \vee, \wedge, f f, t t)$ Boolean s.r., $\mathbb{B}=\{t t, f f\}$
- ($\mathrm{N},+, \cdot, 0,1$) natural number s.r.
- $(\mathbb{Z} / 4 \mathbb{Z},+, \cdot, 0,1)$ modulo 4 ring; $3+2=1,2 \cdot 2=0$.
- ($[0,1]$, max, $\cdot, 0,1$) Viterbi s.r.
- $\left(\mathbb{R}_{\geq 0} \cup\{\infty\}, \min ,+, \infty, 0\right)$ tropical s.r.
- $\left(\mathcal{P}\left(\Sigma^{*}\right), \cup, \circ, \emptyset,\{\varepsilon\}\right)$ formal language s.r.

$(\mathbb{S}, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring

Examples of semirings (s.r.):

- $(\mathbb{B}, \vee, \wedge, f f, t t)$ Boolean s.r., $\mathbb{B}=\{t t, f f\}$
- ($\mathrm{N},+, \cdot, 0,1$) natural number s.r.
- $(\mathbb{Z} / 4 \mathbb{Z},+, \cdot, 0,1)$ modulo 4 ring; $3+2=1,2 \cdot 2=0$.
- ($[0,1]$, max, $\cdot, 0,1$) Viterbi s.r.
- $\left(\mathbb{R}_{\geq 0} \cup\{\infty\}, \min ,+, \infty, 0\right)$ tropical s.r.
- $\left(\mathcal{P}\left(\Sigma^{*}\right), \cup, \circ, \emptyset,\{\varepsilon\}\right)$ formal language s.r.
- every bounded, distributive lattice $(S, \vee, \wedge, 0,1)$
- every ring, semifield, and field

Example: $\mathcal{P}\left(\{1,2\}^{*}\right)$-wta $\mathcal{A}=\left(Q, \Sigma, \delta^{\prime}, F\right)$ with

- $Q=\{q, \bar{\alpha}, f\}$,
- $F: Q \rightarrow \mathcal{P}\left(\{1,2\}^{*}\right)$ with $F(f)=\{\varepsilon\}$ and $F(q)=F(\bar{\alpha})=\emptyset$
- δ^{\prime} given by

Example: $\mathcal{P}\left(\{1,2\}^{*}\right)$-wta $\mathcal{A}=\left(Q, \Sigma, \delta^{\prime}, F\right)$ with

- $Q=\{q, \bar{\alpha}, f\}$,
- $F: Q \rightarrow \mathcal{P}\left(\{1,2\}^{*}\right)$ with $F(f)=\{\varepsilon\}$ and $F(q)=F(\bar{\alpha})=\emptyset$
- δ^{\prime} given by

Example: $\quad \mathcal{P}\left(\{1,2\}^{*}\right)$-wta $\mathcal{A}=\left(Q, \Sigma, \delta^{\prime}, F\right)$ with

- $Q=\{q, \bar{\alpha}, f\}$,
- $F: Q \rightarrow \mathcal{P}\left(\{1,2\}^{*}\right)$ with $F(f)=\{\varepsilon\}$ and $F(q)=F(\bar{\alpha})=\emptyset$
- δ^{\prime} given by

$L_{\mathcal{A}}(\xi)=\{\varepsilon, 11\}$
set of reverse positions of $\sigma(., \alpha)$

outline ...
- support of recognizable \mathbb{S}-weighted tree languages
- inductive computation of $L_{\mathcal{A}}$
- determinization, minimization, decidability
- characterization results for $\mathrm{REC}(\mathbb{S})$
- weighted tree automata over other algebras
outline ...
- support of recognizable \mathbb{S}-weighted tree languages
- inductive computation of $L_{\mathcal{A}}$
- determinization, minimization, decidability
- characterization results for REC(S)
- weighted tree automata over other algebras

Let $L: T_{\Sigma} \rightarrow \mathbb{S}$ be an \mathbb{S}-weighted tree language

Let $L: T_{\Sigma} \rightarrow \mathbb{S}$ be an \mathbb{S}-weighted tree language

support of L :

$$
\operatorname{supp}(L)=\left\{\xi \in T_{\Sigma} \mid L(\xi) \neq 0\right\}
$$

Let $L: T_{\Sigma} \rightarrow \mathbb{S}$ be an \mathbb{S}-weighted tree language support of L :

$$
\operatorname{supp}(L)=\left\{\xi \in T_{\Sigma} \mid L(\xi) \neq 0\right\}
$$

Theorem: For every \mathbb{B}-wta \mathcal{A}
$\operatorname{supp}\left(L_{\mathcal{A}}\right)$ is recognizable by an fta.

Let $L: T_{\Sigma} \rightarrow \mathbb{S}$ be an \mathbb{S}-weighted tree language support of L :

$$
\operatorname{supp}(L)=\left\{\xi \in T_{\Sigma} \mid L(\xi) \neq 0\right\}
$$

Theorem: For every \mathbb{B}-wta \mathcal{A}

$$
\operatorname{supp}\left(L_{\mathcal{A}}\right) \text { is recognizable by an fta. }
$$

```
wrong: For every s.r. S and every \mathbb{S}\mathrm{ -wta }\mathcal{A}
    supp}(\mp@subsup{L}{\mathcal{A}}{})\mathrm{ is recognizable by an fta.
```


counterexample:

[Berstel, Reutenauer 88]
\mathbb{Z}-wta $\mathcal{A}=(Q, \Sigma, \delta, F)$

\mathbb{Z}-wta $\mathcal{A}=(Q, \Sigma, \delta, F)$

$L_{\mathcal{A}}(\xi)=|\xi|_{\alpha}-|\xi|_{\beta}$ for every $\xi \in T_{\Sigma}$
\mathbb{Z}-wta $\mathcal{A}=(Q, \Sigma, \delta, F)$

$L_{\mathcal{A}}(\xi)=|\xi|_{\alpha}-|\xi|_{\beta}$ for every $\xi \in T_{\Sigma}$
Assume that $\operatorname{supp}\left(L_{\mathcal{A}}\right)$ is recognizable.
\mathbb{Z}-wta $\mathcal{A}=(Q, \Sigma, \delta, F)$

$L_{\mathcal{A}}(\xi)=|\xi|_{\alpha}-|\xi|_{\beta}$ for every $\xi \in T_{\Sigma}$
Assume that $\operatorname{supp}\left(L_{\mathcal{A}}\right)$ is recognizable.
Then also $T_{\Sigma} \backslash \operatorname{supp}\left(L_{\mathcal{A}}\right)=\left\{\left.\xi \in T_{\Sigma}| | \xi\right|_{\alpha}=|\xi|_{\beta}\right\}$ recognizable.
\mathbb{Z}-wta $\mathcal{A}=(Q, \Sigma, \delta, F)$

$L_{\mathcal{A}}(\xi)=|\xi|_{\alpha}-|\xi|_{\beta}$ for every $\xi \in T_{\Sigma}$
Assume that $\operatorname{supp}\left(L_{\mathcal{A}}\right)$ is recognizable.
Then also $T_{\Sigma} \backslash \operatorname{supp}\left(L_{\mathcal{A}}\right)=\left\{\left.\xi \in T_{\Sigma}| | \xi\right|_{\alpha}=|\xi|_{\beta}\right\}$ recognizable.

Let $L: T_{\Sigma} \rightarrow \mathbb{S}$ be an \mathbb{S}-weighted tree language support of L :

$$
\operatorname{supp}(L)=\left\{\xi \in T_{\Sigma} \mid L(\xi) \neq 0\right\}
$$

Theorem: For every \mathbb{B}-wta \mathcal{A}
$\operatorname{supp}\left(L_{\mathcal{A}}\right)$ is recognizable by an fta.
wrong: $\begin{array}{ll}\text { For every s.r. } \mathbb{S} \text { and every } \mathbb{S} \text {-wta } \mathcal{A} \\ & \operatorname{supp}\left(L_{\mathcal{A}}\right) \text { is recognizable by an fta. }\end{array}$

Let $L: T_{\Sigma} \rightarrow \mathbb{S}$ be an \mathbb{S}-weighted tree language support of L :

$$
\operatorname{supp}(L)=\left\{\xi \in T_{\Sigma} \mid L(\xi) \neq 0\right\}
$$

Theorem: For every \mathbb{B}-wta \mathcal{A}

$$
\operatorname{supp}\left(L_{\mathcal{A}}\right) \text { is recognizable by an fta. }
$$

Theorem: For every ???? s.r. \mathbb{S} and every \mathbb{S}-wta \mathcal{A} $\operatorname{supp}\left(L_{\mathcal{A}}\right)$ is recognizable by an fta.

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta
Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with $\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)$.

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta
Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with $\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)$.
$\xi \in \operatorname{supp}\left(L_{\mathcal{A}}\right)$

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta
Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with $\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)$.
$\xi \in \operatorname{supp}\left(L_{\mathcal{A}}\right)$
iff $\quad L_{\mathcal{A}}(\xi) \neq 0$

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta

Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with $\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)$.
$\xi \in \operatorname{supp}\left(L_{\mathcal{A}}\right)$
iff $\quad L_{\mathcal{A}}(\xi) \neq 0$
iff $\underset{\kappa: \operatorname{pos}(\xi) \rightarrow Q}{\bigoplus} \operatorname{wt}(\kappa) \odot F(\kappa(\varepsilon)) \neq 0$

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta
Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with $\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)$.
$\xi \in \operatorname{supp}\left(L_{\mathcal{A}}\right)$
iff $\quad L_{\mathcal{A}}(\xi) \neq 0$
iff $\underset{\kappa: \operatorname{pos}(\xi) \rightarrow Q}{\bigoplus} \mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)) \neq 0$
$\xi \in L(\operatorname{supp}(\mathcal{A}))$

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta
Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with

$$
\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)
$$

$\xi \in \operatorname{supp}\left(L_{\mathcal{A}}\right)$
iff $\quad L_{\mathcal{A}}(\xi) \neq 0$
iff $\underset{\kappa: \operatorname{pos}(\xi) \rightarrow Q}{\bigoplus} \mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)) \neq 0$
there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ such that $\kappa \delta$-comp. $\wedge \kappa(\varepsilon) \in F^{\prime}$
iff $\quad \xi \in L(\operatorname{supp}(\mathcal{A}))$

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta
Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with

$$
\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)
$$

$$
\xi \in \operatorname{supp}\left(L_{\mathcal{A}}\right)
$$

iff $\quad L_{\mathcal{A}}(\xi) \neq 0$
iff $\underset{\kappa: \operatorname{pos}(\xi) \rightarrow Q}{\bigoplus} \mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)) \neq 0$
iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ such that $\kappa \delta$-comp. $\wedge \kappa(\varepsilon) \in F^{\prime}$
iff $\quad \xi \in L(\operatorname{supp}(\mathcal{A}))$

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta
Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with

$$
\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)
$$

$$
\xi \in \operatorname{supp}\left(L_{\mathcal{A}}\right)
$$

iff $\quad L_{\mathcal{A}}(\xi) \neq 0$
iff $\underset{\kappa: \operatorname{pos}(\xi) \rightarrow Q}{\bigoplus} \operatorname{wt}(\kappa) \odot F(\kappa(\varepsilon)) \neq 0$
particular δ-compatible κ :
$(\varepsilon, \alpha, q) \in \delta^{\prime}$ and $(q, \gamma, q) \in \delta^{\prime}$ and $q \in F^{\prime}$
iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ such that $\kappa \delta$-comp. $\wedge \kappa(\varepsilon) \in F^{\prime}$
iff $\quad \xi \in L(\operatorname{supp}(\mathcal{A}))$

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta
Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with

$$
\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)
$$

$$
\xi \in \operatorname{supp}\left(L_{\mathcal{A}}\right)
$$

iff $\quad L_{\mathcal{A}}(\xi) \neq 0$
iff $\underset{\kappa: \operatorname{pos}(\xi) \rightarrow Q}{\bigoplus} \operatorname{wt}(\kappa) \odot F(\kappa(\varepsilon)) \neq 0$

$$
\begin{aligned}
& \mathrm{wt}(\kappa): \\
& \underbrace{\delta(\varepsilon, \alpha, q)}_{=2} \cdot \underbrace{\delta(q, \gamma, q)}_{=2} \cdot \underbrace{F(q)}_{=1}
\end{aligned}
$$

particular δ-compatible κ :
$(\varepsilon, \alpha, q) \in \delta^{\prime}$ and $(q, \gamma, q) \in \delta^{\prime}$ and $q \in F^{\prime}$
iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ such that $\kappa \delta$-comp. $\wedge \kappa(\varepsilon) \in F^{\prime}$
iff $\quad \xi \in L(\operatorname{supp}(\mathcal{A}))$

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta $\quad(\{0,1,2,3\},+, \cdot, 0,1)=\mathbb{Z} / 4 \mathbb{Z}$
Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with

$$
\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)
$$

$$
\xi \in \operatorname{supp}\left(L_{\mathcal{A}}\right)
$$

iff $\quad L_{\mathcal{A}}(\xi) \neq 0$
iff $\underset{\kappa: \operatorname{pos}(\xi) \rightarrow Q}{\bigoplus} \mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)) \neq 0$
$\kappa: \operatorname{pos}(\xi) \rightarrow Q$

particular δ-compatible κ :
$(\varepsilon, \alpha, q) \in \delta^{\prime}$ and $(q, \gamma, q) \in \delta^{\prime}$ and $q \in F^{\prime}$
iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ such that $\kappa \delta$-comp. $\wedge \kappa(\varepsilon) \in F^{\prime}$
iff $\quad \xi \in L(\operatorname{supp}(\mathcal{A}))$

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta $\quad(\{0,1,2,3\},+, \cdot, 0,1)=\mathbb{Z} / 4 \mathbb{Z}$
Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with

$$
\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)
$$

$$
\xi \in \operatorname{supp}\left(L_{\mathcal{A}}\right)
$$

iff $\quad L_{\mathcal{A}}(\xi) \neq 0$
iff $\underset{\kappa: \operatorname{pos}(\xi) \rightarrow Q}{ } \operatorname{wt}(\kappa) \odot F(\kappa(\varepsilon)) \neq 0$

$$
\begin{aligned}
& \kappa: \operatorname{pos}(\xi) \rightarrow Q \\
& \mathrm{wt}(\kappa): \\
& \underbrace{\delta(\varepsilon, \alpha, q)}_{=2} \cdot \underbrace{\delta(q, \gamma, q)}_{=2} \cdot \underbrace{F(q)}_{=1}=0
\end{aligned}
$$

particular δ-compatible κ :
$(\varepsilon, \alpha, q) \in \delta^{\prime}$ and $(q, \gamma, q) \in \delta^{\prime}$ and $q \in F^{\prime}$
iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ such that $\kappa \delta$-comp. $\wedge \kappa(\varepsilon) \in F^{\prime}$
iff $\quad \xi \in L(\operatorname{supp}(\mathcal{A}))$

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta $\quad \mathbb{S}$ zero-divisor free
Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with

$$
\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)
$$

$$
\xi \in \operatorname{supp}\left(L_{\mathcal{A}}\right)
$$

iff $\quad L_{\mathcal{A}}(\xi) \neq 0$
iff $\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q} \mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)) \neq 0$
$\kappa: \operatorname{pos}(\xi) \rightarrow Q$

particular δ-compatible κ :
$(\varepsilon, \alpha, q) \in \delta^{\prime}$ and $(q, \gamma, q) \in \delta^{\prime}$ and $q \in F^{\prime}$
iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ such that $\kappa \delta$-comp. $\wedge \kappa(\varepsilon) \in F^{\prime}$
iff $\quad \xi \in L(\operatorname{supp}(\mathcal{A}))$

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta $\quad \mathbb{S}$ zero-divisor free
Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with

$$
\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)
$$

$$
\xi \in \operatorname{supp}\left(L_{\mathcal{A}}\right)
$$

iff $\quad L_{\mathcal{A}}(\xi) \neq 0$
iff $\underset{\kappa: \operatorname{pos}(\xi) \rightarrow Q}{\bigoplus} \mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)) \neq 0$
iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ such that $\kappa \delta$-comp. $\wedge \kappa(\varepsilon) \in F^{\prime}$
iff $\quad \xi \in L(\operatorname{supp}(\mathcal{A}))$

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta $\quad \mathbb{S}$ zero-divisor free
Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with

$$
\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)
$$

$$
\xi \in \operatorname{supp}\left(L_{\mathcal{A}}\right)
$$

iff $\quad L_{\mathcal{A}}(\xi) \neq 0$
iff $\underset{\kappa: \operatorname{pos}(\xi) \rightarrow Q}{\bigoplus} \mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)) \neq 0$

$$
\left(\kappa_{1} \delta \text {-comp. run, } \kappa_{1}(\varepsilon) \in F^{\prime}\right) \vee\left(\kappa_{2} \delta \text {-comp. run, } \kappa_{2}(\varepsilon) \in F^{\prime}\right)
$$

iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ such that $\kappa \delta$-comp. $\wedge \kappa(\varepsilon) \in F^{\prime}$
iff $\quad \xi \in L(\operatorname{supp}(\mathcal{A}))$

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta $\quad \mathbb{S}$ zero-divisor free
Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with

$$
\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)
$$

$$
\xi \in \operatorname{supp}\left(L_{\mathcal{A}}\right)
$$

iff $\quad L_{\mathcal{A}}(\xi) \neq 0$
iff $\underset{\kappa: \operatorname{pos}(\xi) \rightarrow Q}{\bigoplus} \mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)) \neq 0$

$$
\underbrace{\mathrm{wt}\left(\kappa_{1}\right) \cdot F\left(\kappa_{1}(\varepsilon)\right)}_{=2}+\underbrace{\mathrm{wt}\left(\kappa_{2}\right) \cdot F\left(\kappa_{2}(\varepsilon)\right)}_{=-2}
$$

$\left(\kappa_{1} \delta\right.$-comp. run, $\left.\kappa_{1}(\varepsilon) \in F^{\prime}\right) \vee\left(\kappa_{2} \delta\right.$-comp. run, $\left.\kappa_{2}(\varepsilon) \in F^{\prime}\right)$
iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ such that $\kappa \delta$-comp. $\wedge \kappa(\varepsilon) \in F^{\prime}$
iff $\quad \xi \in L(\operatorname{supp}(\mathcal{A}))$

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta $\quad \mathbb{S}$ zero-divisor free $\mathbb{S}=\mathbb{Z}$
Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with

$$
\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)
$$

$$
\xi \in \operatorname{supp}\left(L_{\mathcal{A}}\right)
$$

iff $\quad L_{\mathcal{A}}(\xi) \neq 0$
iff $\underset{\kappa: \operatorname{pos}(\xi) \rightarrow Q}{\bigoplus} \operatorname{wt}(\kappa) \odot F(\kappa(\varepsilon)) \neq 0$

$$
\underbrace{\mathrm{wt}\left(\kappa_{1}\right) \cdot F\left(\kappa_{1}(\varepsilon)\right)}_{=2}+\underbrace{\mathrm{wt}\left(\kappa_{2}\right) \cdot F\left(\kappa_{2}(\varepsilon)\right)}_{=-2}=0
$$

$\left(\kappa_{1} \delta\right.$-comp. run, $\left.\kappa_{1}(\varepsilon) \in F^{\prime}\right) \vee\left(\kappa_{2} \delta\right.$-comp. run, $\left.\kappa_{2}(\varepsilon) \in F^{\prime}\right)$
iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ such that $\kappa \delta$-comp. $\wedge \kappa(\varepsilon) \in F^{\prime}$
iff $\quad \xi \in L(\operatorname{supp}(\mathcal{A}))$

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta $\quad \mathbb{S}$ zero-divisor free $\mathbb{S}=\mathbb{Z}$
Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with

$$
\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)
$$

$$
\xi \in \operatorname{supp}\left(L_{\mathcal{A}}\right)
$$

iff $\quad L_{\mathcal{A}}(\xi) \neq 0$
iff $\underset{\kappa: \operatorname{pos}(\xi) \rightarrow Q}{ } \operatorname{wt}(\kappa) \odot F(\kappa(\varepsilon)) \neq 0$

$$
\underbrace{\mathrm{wt}\left(\kappa_{1}\right) \cdot F\left(\kappa_{1}(\varepsilon)\right)}_{=2}+\underbrace{\mathrm{wt}\left(\kappa_{2}\right) \cdot F\left(\kappa_{2}(\varepsilon)\right)}_{=-2}=0
$$

$\left(\kappa_{1} \delta\right.$-comp. run, $\left.\kappa_{1}(\varepsilon) \in F^{\prime}\right) \vee\left(\kappa_{2} \delta\right.$-comp. run, $\left.\kappa_{2}(\varepsilon) \in F^{\prime}\right)$
iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ such that $\kappa \delta$-comp. $\wedge \kappa(\varepsilon) \in F^{\prime}$
iff $\quad \xi \in L(\operatorname{supp}(\mathcal{A}))$

Let $\mathcal{A}=(Q, \Sigma, \delta, F) \mathbb{S}$-wta \mathbb{S} zero-divisor free , zero-sum free
Construct fta $\operatorname{supp}(\mathcal{A})=\left(Q, \Sigma, \delta^{\prime}, F^{\prime}\right)$ with

$$
\delta^{\prime}=\operatorname{supp}(\delta), F^{\prime}=\operatorname{supp}(F)
$$

$$
\xi \in \operatorname{supp}\left(L_{\mathcal{A}}\right)
$$

iff $\quad L_{\mathcal{A}}(\xi) \neq 0$
iff $\underset{\kappa: \operatorname{pos}(\xi) \rightarrow Q}{\bigoplus} \operatorname{wt}(\kappa) \odot F(\kappa(\varepsilon)) \neq 0$

$$
\underbrace{\mathrm{wt}\left(\kappa_{1}\right) \cdot F\left(\kappa_{1}(\varepsilon)\right)}_{\neq 0}+\underbrace{\mathrm{wt}\left(\kappa_{2}\right) \cdot F\left(\kappa_{2}(\varepsilon)\right)}_{\neq 0} \neq 0
$$

$\left(\kappa_{1} \delta\right.$-comp. run, $\left.\kappa_{1}(\varepsilon) \in F^{\prime}\right) \vee\left(\kappa_{2} \delta\right.$-comp. run, $\left.\kappa_{2}(\varepsilon) \in F^{\prime}\right)$
iff there is $\kappa: \operatorname{pos}(\xi) \rightarrow Q$ such that $\kappa \delta$-comp. $\wedge \kappa(\varepsilon) \in F^{\prime}$
iff $\quad \xi \in L(\operatorname{supp}(\mathcal{A}))$

Let $L: T_{\Sigma} \rightarrow \mathbb{S}$ be an \mathbb{S}-weighted tree language support of L :

$$
\operatorname{supp}(L)=\left\{\xi \in T_{\Sigma} \mid L(\xi) \neq 0\right\}
$$

Theorem: For every \mathbb{B}-wta \mathcal{A}

$$
\operatorname{supp}\left(L_{\mathcal{A}}\right) \text { is recognizable by an fta. }
$$

Theorem: For every zero-sum free and zero-divisor free s.r. \mathbb{S} and every \mathbb{S}-wta \mathcal{A} s.r.
$\operatorname{supp}\left(L_{\mathcal{A}}\right)$ is recognizable by an fta.

Let $L: T_{\Sigma} \rightarrow \mathbb{S}$ be an \mathbb{S}-weighted tree language support of L :

$$
\operatorname{supp}(L)=\left\{\xi \in T_{\Sigma} \mid L(\xi) \neq 0\right\}
$$

Theorem: For every \mathbb{B}-wta \mathcal{A}

$$
\operatorname{supp}\left(L_{\mathcal{A}}\right) \text { is recognizable by an fta. }
$$

Theorem: For every zero-sum free and zero-divisor free s.r. \mathbb{S} and every \mathbb{S}-wta \mathcal{A} s.r.
$\operatorname{supp}\left(L_{\mathcal{A}}\right)$ is recognizable by an fta.
e.g. \mathbb{B}, \mathbb{N}, Viterbi s.r., formal language s.r.

Let $L: T_{\Sigma} \rightarrow \mathbb{S}$ be an \mathbb{S}-weighted tree language support of L :

$$
\operatorname{supp}(L)=\left\{\xi \in T_{\Sigma} \mid L(\xi) \neq 0\right\}
$$

Theorem: For every \mathbb{B}-wta \mathcal{A}

$$
\operatorname{supp}\left(L_{\mathcal{A}}\right) \text { is recognizable by an fta. }
$$

Theorem: For every zero-sum free and zero-divisor free s.r. \mathbb{S} and every \mathbb{S}-wta \mathcal{A} s.r.
$\operatorname{supp}\left(L_{\mathcal{A}}\right)$ is recognizable by an fta.
e.g. \mathbb{B}, \mathbb{N}, Viterbi s.r., formal language s.r.
e.g. not: \mathbb{Z}, rings
outline ...

- support of recognizable \mathbb{S}-weighted tree languages
- inductive computation of $L_{\mathcal{A}}$
- determinization, minimization, decidability
- characterization results for $\mathrm{REC}(\mathbb{S})$
- weighted tree automata over other algebras
\mathbb{S}-wta $\mathcal{A}=(Q, \Sigma, \delta, F), \quad L_{\mathcal{A}}(\xi)=\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)))$

$$
\mathbb{S} \text {-wta } \mathcal{A}=(Q, \Sigma, \delta, F), \quad L_{\mathcal{A}}(\xi)=\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)))
$$

computation of $L_{\mathcal{A}}(\xi)$ is in $\mathcal{O}\left(|Q|^{|\operatorname{pos}(\xi)|} \cdot|\operatorname{pos}(\xi)|\right)$

S-wta $\mathcal{A}=(Q, \Sigma, \delta, F), \quad L_{\mathcal{A}}(\xi)=\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\operatorname{wt}(\kappa) \odot F(\kappa(\varepsilon)))$
define $h: T_{\Sigma} \rightarrow \mathbb{S}^{Q}$ with $h(\xi)_{q}=\bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\ \kappa(\varepsilon)=q}} \operatorname{wt}(\kappa)$
\mathbb{S}-sta $\mathcal{A}=(Q, \Sigma, \delta, F), \quad L_{\mathcal{A}}(\xi)=\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)))$
define $h: T_{\Sigma} \rightarrow \mathbb{S}^{Q}$ with $h(\xi)_{q}=\bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\ \kappa(\varepsilon)=q}} \operatorname{wt}(\kappa)$
Then:

$$
L_{\mathcal{A}}(\xi)
$$

\mathbb{S}-sta $\mathcal{A}=(Q, \Sigma, \delta, F), \quad L_{\mathcal{A}}(\xi)=\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)))$
define $h: T_{\Sigma} \rightarrow \mathbb{S}^{Q}$ with $h(\xi)_{q}=\bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\ \kappa(\varepsilon)=q}} \operatorname{wt}(\kappa)$
Then:

$$
=\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}^{L_{\mathcal{A}}(\xi)}(\operatorname{wt}(\kappa) \odot F(\kappa(\varepsilon)))
$$

\mathbb{S}-sta $\mathcal{A}=(Q, \Sigma, \delta, F), \quad L_{\mathcal{A}}(\xi)=\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)))$
define $h: T_{\Sigma} \rightarrow \mathbb{S}^{Q}$ with $h(\xi)_{q}=\bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\ \kappa(\varepsilon)=q}} \operatorname{wt}(\kappa)$
Then:

$$
\begin{aligned}
& L_{\mathcal{A}}(\xi) \\
= & \bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\operatorname{wt}(\kappa) \odot F(\kappa(\varepsilon))) \\
= & \left.\bigoplus_{q \in Q} \bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\
\kappa(\varepsilon)=q}}(\operatorname{wt}(\kappa) \odot F(q)) \quad \text { (by comm., assoc. of } \oplus\right)
\end{aligned}
$$

S-wta $\mathcal{A}=(Q, \Sigma, \delta, F), \quad L_{\mathcal{A}}(\xi)=\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)))$
define $h: T_{\Sigma} \rightarrow \mathbb{S}^{Q}$ with $h(\xi)_{q}=\bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\ \kappa(\varepsilon)=q}} \operatorname{wt}(\kappa)$
Then:

$$
\begin{aligned}
& L_{\mathcal{A}}(\xi) \\
= & \bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q} \\
= & \bigoplus_{q \in Q} \bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\
\kappa(\varepsilon)=q}}(\operatorname{wt}(\kappa) \odot F(\kappa(\varepsilon))) \\
= & \bigoplus_{q \in Q}\left(\bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\
\kappa(\varepsilon)=q}} \operatorname{wt}(\kappa)\right) \odot F(q) \quad \text { (by distr. from right) }
\end{aligned}
$$

S-wta $\mathcal{A}=(Q, \Sigma, \delta, F), \quad L_{\mathcal{A}}(\xi)=\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)))$
define $h: T_{\Sigma} \rightarrow \mathbb{S}^{Q}$ with $h(\xi)_{q}=\bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\ \kappa(\varepsilon)=q}} \operatorname{wt}(\kappa)$
Then:

$$
\begin{aligned}
& L_{\mathcal{A}}(\xi) \\
= & \bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\operatorname{wt}(\kappa) \odot F(\kappa(\varepsilon))) \\
= & \left.\bigoplus_{q \in Q} \bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\
\kappa(\varepsilon)=q}}(\mathrm{wt}(\kappa) \odot F(q)) \quad \text { (by comm., assoc. of } \oplus\right) \\
= & \left.\bigoplus_{q \in Q} \underset{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\
\kappa(\varepsilon)=q}}{ } \operatorname{wt}(\kappa)\right) \odot F(q) \quad \text { (by distr. from right) } \\
= & \bigoplus_{q \in Q}\left(h(\xi)_{q} \odot F(q)\right)
\end{aligned}
$$

\mathbb{S}-sta $\mathcal{A}=(Q, \Sigma, \delta, F), \quad L_{\mathcal{A}}(\xi)=\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)))$
define $h: T_{\Sigma} \rightarrow \mathbb{S}^{Q}$ with $h(\xi)_{q}=\bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\ \kappa(\varepsilon)=q}} \operatorname{wt}(\kappa)$
Then:

$$
L_{\mathcal{A}}(\xi)=\bigoplus_{q \in Q}\left(h(\xi)_{q} \odot F(q)\right)
$$

\mathbb{S}-sta $\mathcal{A}=(Q, \Sigma, \delta, F), \quad L_{\mathcal{A}}(\xi)=\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)))$ define $h: T_{\Sigma} \rightarrow \mathbb{S}^{Q}$ with $h(\xi)_{q}=\bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\ \kappa(\varepsilon)=q}} \operatorname{wt}(\kappa)$
Then:

$$
L_{\mathcal{A}}(\xi)=\bigoplus_{q \in Q}\left(h(\xi)_{q} \odot F(q)\right)
$$

\mathbb{S}-sta $\mathcal{A}=(Q, \Sigma, \delta, F), \quad L_{\mathcal{A}}(\xi)=\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)))$ define $h: T_{\Sigma} \rightarrow \mathbb{S}^{Q}$ with $h(\xi)_{q}=\bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\ \kappa(\varepsilon)=q}} \operatorname{wt}(\kappa)$
Then:

$$
L_{\mathcal{A}}(\xi)=\bigoplus_{q \in Q}\left(h(\xi)_{q} \odot F(q)\right)
$$

\mathbb{S}-sta $\mathcal{A}=(Q, \Sigma, \delta, F), \quad L_{\mathcal{A}}(\xi)=\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)))$
define $h: T_{\Sigma} \rightarrow \mathbb{S}^{Q}$ with $h(\xi)_{q}=\bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\ \kappa(\varepsilon)=q}} \operatorname{wt}(\kappa)$
Then:

$$
L_{\mathcal{A}}(\xi)=\bigoplus_{q \in Q}\left(h(\xi)_{q} \odot F(q)\right)
$$

define $\Phi_{\sigma}: S^{Q} \times \ldots \times S^{Q} \rightarrow S^{Q}$
$\Phi_{\sigma}\left(v_{1}, \ldots, v_{k}\right)_{q}=$

$$
\bigoplus_{q_{1}, \ldots, q_{k} \in Q}\left(v_{1}\right)_{q_{1}} \odot \ldots \odot\left(v_{k}\right)_{q_{k}} \odot \delta\left(q_{1} \ldots q_{k}, \sigma, q\right)
$$

\mathbb{S}-sta $\mathcal{A}=(Q, \Sigma, \delta, F), \quad L_{\mathcal{A}}(\xi)=\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)))$
define $h: T_{\Sigma} \rightarrow \mathbb{S}^{Q}$ with $h(\xi)_{q}=\bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\ \kappa(\varepsilon)=q}} \operatorname{wt}(\kappa)$
Then:

$$
L_{\mathcal{A}}(\xi)=\bigoplus_{q \in Q}\left(h(\xi)_{q} \odot F(q)\right)
$$

define $\Phi_{\sigma}: S^{Q} \times \ldots \times S^{Q} \rightarrow S^{Q}$
$\Phi_{\sigma}\left(v_{1}, \ldots, v_{k}\right)_{q}=$

$$
\bigoplus_{q_{1}, \ldots, q_{k} \in Q}\left(v_{1}\right)_{q_{1}} \odot \ldots \odot\left(v_{k}\right)_{q_{k}} \odot \delta\left(q_{1} \ldots q_{k}, \sigma, q\right)
$$

then $h\left(\sigma\left(\xi_{1}, \ldots, \xi_{k}\right)\right)=\Phi_{\sigma}\left(h\left(\xi_{1}\right), \ldots, h\left(\xi_{k}\right)\right)$
\mathbb{S}-sta $\mathcal{A}=(Q, \Sigma, \delta, F), \quad L_{\mathcal{A}}(\xi)=\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)))$
define $h: T_{\Sigma} \rightarrow \mathbb{S}^{Q}$ with $h(\xi)_{q}=\bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\ \kappa(\varepsilon)=q}} \operatorname{wt}(\kappa)$
Then:

$$
L_{\mathcal{A}}(\xi)=\bigoplus_{q \in Q}\left(h(\xi)_{q} \odot F(q)\right)
$$

define $\Phi_{\sigma}: S^{Q} \times \ldots \times S^{Q} \rightarrow S^{Q}$
$\Phi_{\sigma}\left(v_{1}, \ldots, v_{k}\right)_{q}=$

$$
\bigoplus_{q_{1}, \ldots, q_{k} \in Q}\left(v_{1}\right)_{q_{1}} \odot \ldots \odot\left(v_{k}\right)_{q_{k}} \odot \delta\left(q_{1} \ldots q_{k}, \sigma, q\right)
$$

then $h\left(\sigma\left(\xi_{1}, \ldots, \xi_{k}\right)\right)=\Phi_{\sigma}\left(h\left(\xi_{1}\right), \ldots, h\left(\xi_{k}\right)\right)$
needs distributivity from right and left

S-wta $\mathcal{A}=(Q, \Sigma, \delta, F), \quad L_{\mathcal{A}}(\xi)=\bigoplus_{\kappa: \operatorname{pos}(\xi) \rightarrow Q}(\mathrm{wt}(\kappa) \odot F(\kappa(\varepsilon)))$
define $h: T_{\Sigma} \rightarrow \mathbb{S}^{Q}$ with $h(\xi)_{q}=\bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\ \kappa(\varepsilon)=q}} \operatorname{wt}(\kappa)$
Then:

$$
L_{\mathcal{A}}(\xi)=\bigoplus_{q \in Q}\left(h(\xi)_{q} \odot F(q)\right)
$$

define $\Phi_{\sigma}: S^{Q} \times \ldots \times S^{Q} \rightarrow S^{Q}$
$\Phi_{\sigma}\left(v_{1}, \ldots, v_{k}\right)_{q}=$

$$
\bigoplus_{q_{1}, \ldots, q_{k} \in Q}\left(v_{1}\right)_{q_{1}} \odot \ldots \odot\left(v_{k}\right)_{q_{k}} \odot \delta\left(q_{1} \ldots q_{k}, \sigma, q\right)
$$

then $h\left(\sigma\left(\xi_{1}, \ldots, \xi_{k}\right)\right)=\Phi_{\sigma}\left(h\left(\xi_{1}\right), \ldots, h\left(\xi_{k}\right)\right)$
computation of $L_{\mathcal{A}}(\xi)$ is in $\mathcal{O}\left(|\operatorname{pos}(\xi)| \cdot|Q|^{\operatorname{maxrk} \Sigma}\right)$
outline ...

- support of recognizable \mathbb{S}-weighted tree languages
- inductive computation of $L_{\mathcal{A}}$
- determinization, minimization, decidability
- characterization results for $\mathrm{REC}(\mathbb{S})$
- weighted tree automata over other algebras

Let $\mathcal{A}=(Q, \Sigma, \delta, F)$ be an \mathbb{S}-wta.

Let $\mathcal{A}=(Q, \Sigma, \delta, F)$ be an \mathbb{S}-wta.
\mathcal{A} is deterministic if

$$
\delta\left(q_{1} \ldots q_{k}, \sigma, q\right) \neq 0 \text { and } \delta\left(q_{1} \ldots q_{k}, \sigma, q^{\prime}\right) \neq 0 \text { imply } q=q^{\prime}
$$

for every ξ there is at most one run κ with $\operatorname{wt}(\kappa) \neq 0$.

Let $\mathcal{A}=(Q, \Sigma, \delta, F)$ be an \mathbb{S}-wta.
\mathcal{A} is deterministic if

$$
\delta\left(q_{1} \ldots q_{k}, \sigma, q\right) \neq 0 \text { and } \delta\left(q_{1} \ldots q_{k}, \sigma, q^{\prime}\right) \neq 0 \text { imply } q=q^{\prime}
$$

\mathcal{A} is crisp deterministic if
\mathcal{A} is deterministic and $\delta\left(q_{1} \ldots q_{k}, \sigma, q\right) \in\{0,1\}$.
$L_{\mathcal{A}}=\bigoplus_{i=1}^{k} s_{i} \cdot \chi_{L_{i}}$ for some recogn. $L_{i} \subseteq T_{\Sigma}$ and $s_{i} \in S$. image of $L_{\mathcal{A}}$ is finite

Let $\mathcal{A}=(Q, \Sigma, \delta, F)$ be an \mathbb{S}-wta.
\mathcal{A} is deterministic if

$$
\delta\left(q_{1} \ldots q_{k}, \sigma, q\right) \neq 0 \text { and } \delta\left(q_{1} \ldots q_{k}, \sigma, q^{\prime}\right) \neq 0 \text { imply } q=q^{\prime} .
$$

\mathcal{A} is crisp deterministic if
\mathcal{A} is deterministic and $\delta\left(q_{1} \ldots q_{k}, \sigma, q\right) \in\{0,1\}$.
$L_{\mathcal{A}}=\bigoplus_{i=1}^{k} s_{i} \cdot \chi_{L_{i}}$ for some recogn. $L_{i} \subseteq T_{\Sigma}$ and $s_{i} \in S$. image of $L_{\mathcal{A}}$ is finite

Theorem: For every \mathbb{B}-wta there is an equivalent crisp deterministic \mathbb{B}-wta.

Let $\mathcal{A}=(Q, \Sigma, \delta, F)$ be an \mathbb{S}-wta.
\mathcal{A} is deterministic if

$$
\delta\left(q_{1} \ldots q_{k}, \sigma, q\right) \neq 0 \text { and } \delta\left(q_{1} \ldots q_{k}, \sigma, q^{\prime}\right) \neq 0 \text { imply } q=q^{\prime}
$$

\mathcal{A} is crisp deterministic if
\mathcal{A} is deterministic and $\delta\left(q_{1} \ldots q_{k}, \sigma, q\right) \in\{0,1\}$.
$L_{\mathcal{A}}=\bigoplus_{i=1}^{k} s_{i} \cdot \chi_{L_{i}}$ for some recogn. $L_{i} \subseteq T_{\Sigma}$ and $s_{i} \in S$. image of $L_{\mathcal{A}}$ is finite

Theorem: For every \mathbb{B}-wta there is an equivalent crisp deterministic \mathbb{B}-wta.
wrong: For every s.r. \mathbb{S} and \mathbb{S}-wta there is an equivalent crisp deterministic \mathbb{S}-wta. image of $L: T_{\Sigma} \rightarrow \mathbb{N} ; \xi \mapsto \#_{\sigma(. \alpha)}(\xi)$ is not finite.

Let $\mathcal{A}=(Q, \Sigma, \delta, F)$ be an \mathbb{S}-wta.
\mathcal{A} is deterministic if

$$
\delta\left(q_{1} \ldots q_{k}, \sigma, q\right) \neq 0 \text { and } \delta\left(q_{1} \ldots q_{k}, \sigma, q^{\prime}\right) \neq 0 \text { imply } q=q^{\prime}
$$

\mathcal{A} is crisp deterministic if
\mathcal{A} is deterministic and $\delta\left(q_{1} \ldots q_{k}, \sigma, q\right) \in\{0,1\}$.
$L_{\mathcal{A}}=\bigoplus_{i=1}^{k} s_{i} \cdot \chi_{L_{i}}$ for some recogn. $L_{i} \subseteq T_{\Sigma}$ and $s_{i} \in S$. image of $L_{\mathcal{A}}$ is finite

Theorem: For every \mathbb{B}-wta there is an equivalent crisp deterministic \mathbb{B}-wta.

Theorem: For every ???? s.r. \mathbb{S} and every \mathbb{S}-wta there is an equivalent crisp deterministic \mathbb{S}-wta.

```
Theorem: For every locally finite s.r. \(\mathbb{S}\) and every \(\mathbb{S}\)-wta there is an equivalent crisp deterministic \(\mathbb{S}\)-wta.
```

\mathbb{S} is locally finite if for every finite $A \subseteq \mathbb{S}$ the set $\langle A\rangle_{+,,, 0,1}$ is finite
e.g. every bounded distributive lattice $(L, \vee, \wedge, 0,1)$ is a locally finite s.r.

Theorem: For every locally finite s.r. \mathbb{S} and every \mathbb{S}-wta there is an equivalent crisp deterministic \mathbb{S}-wta.

Let $\mathcal{A}=(Q, \Sigma, \delta, F)$ be an \mathbb{S}-wta. powerset construction: define $\mathcal{P}(\mathcal{A})=\left(Q^{\prime}, \Sigma, \delta^{\prime}, F^{\prime}\right)$ such that

Theorem: For every locally finite s.r. \mathbb{S} and every \mathbb{S}-wta there is an equivalent crisp deterministic \mathbb{S}-wta.

Let $\mathcal{A}=(Q, \Sigma, \delta, F)$ be an \mathbb{S}-wta. powerset construction: define $\mathcal{P}(\mathcal{A})=\left(Q^{\prime}, \Sigma, \delta^{\prime}, F^{\prime}\right)$ such that

$$
Q^{\prime}=\left\{h(\xi) \mid \xi \in T_{\Sigma}\right\}
$$

recall: $h: T_{\Sigma} \rightarrow \mathbb{S}^{Q}$ with $h(\xi)_{q}=\bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\ \kappa(\varepsilon)=q}} \operatorname{wt}(\kappa)$

Theorem: For every locally finite s.r. \mathbb{S} and every \mathbb{S}-wta there is an equivalent crisp deterministic \mathbb{S}-wta.

Let $\mathcal{A}=(Q, \Sigma, \delta, F)$ be an \mathbb{S}-wta.
powerset construction: define $\mathcal{P}(\mathcal{A})=\left(Q^{\prime}, \Sigma, \delta^{\prime}, F^{\prime}\right)$ such that

$$
\begin{aligned}
Q^{\prime} & =\left\{h(\xi) \mid \xi \in T_{\Sigma}\right\} \\
\delta^{\prime}\left(v_{1} \ldots v_{k}, \sigma, v\right) & = \begin{cases}1 & v=\Phi_{\sigma}\left(v_{1}, \ldots, v_{k}\right) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

recall: $h: T_{\Sigma} \rightarrow \mathbb{S}^{Q}$ with $h(\xi)_{q}=\bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\ \kappa(\varepsilon)=q}} \operatorname{wt}(\kappa)$

Theorem: For every locally finite s.r. \mathbb{S} and every \mathbb{S}-wta there is an equivalent crisp deterministic \mathbb{S}-wta.

Let $\mathcal{A}=(Q, \Sigma, \delta, F)$ be an \mathbb{S}-wta.
powerset construction: define $\mathcal{P}(\mathcal{A})=\left(Q^{\prime}, \Sigma, \delta^{\prime}, F^{\prime}\right)$ such that

$$
\begin{aligned}
Q^{\prime} & =\left\{h(\xi) \mid \xi \in T_{\Sigma}\right\} \\
\delta^{\prime}\left(v_{1} \ldots v_{k}, \sigma, v\right) & = \begin{cases}1 & v=\Phi_{\sigma}\left(v_{1}, \ldots, v_{k}\right) \\
0 & \text { otherwise } .\end{cases} \\
F^{\prime}(v) & =\bigoplus_{q \in Q} v_{q} \odot F(q)
\end{aligned}
$$

recall: $h: T_{\Sigma} \rightarrow \mathbb{S}^{Q}$ with $h(\xi)_{q}=\bigoplus_{\substack{\kappa: \operatorname{pos}(\xi) \rightarrow Q \\ \kappa(\varepsilon)=q}} \operatorname{wt}(\kappa)$

```
wrong: For every s.r. S and \mathbb{S-wta}
there is an equivalent crisp deterministic }\mathbb{S}\mathrm{ -wta.
```

```
wrong: For every s.r. }\mathbb{S}\mathrm{ and S-wta
there is an equivalent deterministic }\mathbb{S}\mathrm{ -wta.
```

```
wrong: For every s.r. S and \mathbb{S-wta}
there is an equivalent deterministic \mathbb{S}\mathrm{ -wta.}
```

[Borchardt 04] \mathbb{S} tropical s.r. $\left(\mathbb{R}_{\geq 0} \cup\{\infty\}\right.$, min $\left.,+, \infty, 0\right)$

```
wrong: For every s.r. S and \mathbb{S-wta} there is an equivalent deterministic \(\mathbb{S}\)-wta.
```

[Borchardt 04] \mathbb{S} tropical s.r. $\left(\mathbb{R}_{\geq 0} \cup\{\infty\}\right.$, min $\left.,+, \infty, 0\right)$


```
wrong: For every s.r. \mathbb{S and \mathbb{S-wta}}\mathbf{}\mathrm{ -} there is an equivalent deterministic \(\mathbb{S}\)-wta.
```

[Borchardt 04] \mathbb{S} tropical s.r. $\left(\mathbb{R}_{\geq 0} \cup\{\infty\}\right.$, min, $\left.+, \infty, 0\right)$

$L: T_{\Sigma} \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$ with

$$
L(\xi)= \begin{cases}0 & \text { if } \xi=\sigma(s, t), \text { no } \gamma \text { occurs in } s \text { and } t \\ \#_{\sigma}(s) & \text { if } \xi=\gamma(s), \text { no } \gamma \text { occurs in } s \\ \infty & \text { otherwise }\end{cases}
$$

```
wrong: For every s.r. S and \mathbb{S-wta}
there is an equivalent deterministic }\mathbb{S}\mathrm{ -wta.
```

```
wrong: For every s.r. S and \mathbb{S-wta}
there is an equivalent deterministic }\mathbb{S}\mathrm{ -wta.
```

Theorem For every extremal semifield \mathbb{S} and \mathbb{S}-wta with the twins property there is an equivalent deterministic \mathbb{S}-wta.
[Kirsten, Mäurer 03; Büchse, May, V. 10]
outline ...

- support of recognizable \mathbb{S}-weighted tree languages
- inductive computation of $L_{\mathcal{A}}$
- determinization, minimization, decidability
- characterization results for $\operatorname{REC}(\mathbb{S})$
- weighted tree automata over other algebras
outline ...
- support of recognizable \mathbb{S}-weighted tree languages
- inductive computation of $L_{\mathcal{A}}$
- determinization, minimization, decidability
- characterization results for REC(S)
- weighted tree automata over other algebras
minimization:
wta over fields:
[Bozapalidis, Bozapalidis-Louscou 83, 91] exponential-time
outline ...
- support of recognizable \mathbb{S}-weighted tree languages
- inductive computation of $L_{\mathcal{A}}$
- determinization, minimization, decidability
- characterization results for REC(S)
- weighted tree automata over other algebras
minimization:
wta over fields:
[Bozapalidis, Bozapalidis-Louscou 83, 91] exponential-time deterministic wta over semifields:
[Borchardt 03, 04] exponential-time [Maletti 09] polynomial-time
outline ...
- support of recognizable \mathbb{S}-weighted tree languages
- inductive computation of $L_{\mathcal{A}}$
- determinization, minimization, decidability
- characterization results for REC(S)
- weighted tree automata over other algebras
decidability of equivalence:
wta over fields:
[Seidl 90] polynomial-time
outline ...
- support of recognizable \mathbb{S}-weighted tree languages
- inductive computation of $L_{\mathcal{A}}$
- determinization, minimization, decidability
- characterization results for REC(S)
- weighted tree automata over other algebras
$\operatorname{REC}(\mathbb{S})$ is equal to the class of \mathbb{S}-weighted tree languages defined by ...
$\operatorname{REC}(\mathbb{S})$ is equal to the class of \mathbb{S}-weighted tree languages defined by ...
- weighted regular tree grammar in normal form
e.g. $L_{\#}: T_{\Sigma} \rightarrow \mathbb{N}, \quad \xi \mapsto \#_{\sigma(., \alpha)}$
$(q \bar{\alpha}, \sigma, f) \rightsquigarrow f \xrightarrow{1} \sigma(q, \bar{\alpha})$
$(q q, \sigma, q) \rightsquigarrow \quad q \xrightarrow{1} \sigma(q, q)$
$(q f, \sigma, f) \rightsquigarrow f \xrightarrow{1} \sigma(q, f) \ldots$
$R E C(\mathbb{S})$ is equal to the class of \mathbb{S}-weighted tree languages defined by ...
- weighted regular tree grammar in normal form
- weighted regular tree grammar, if \mathbb{S} allows infinite summation [Ésik, Kuich 03]
$q \xrightarrow{s} q$ chain rules
$\operatorname{REC}(\mathbb{S})$ is equal to the class of \mathbb{S}-weighted tree languages defined by ...
- weighted regular tree grammar in normal form
- weighted regular tree grammar, if \mathbb{S} allows infinite summation
- weighted rational expressions (Kleene's theorem) [Droste, Pech, V. 05; Fülöp, Maletti, V. 09]

$$
\begin{aligned}
\text { e.g. } L_{\#} & : T_{\Sigma} \rightarrow \mathbb{N}, \quad \xi \mapsto \#_{\sigma(., \alpha)} \\
\eta & =\eta_{1} \circ_{z} 1 . \sigma(z, \alpha) \circ_{z} \eta_{2} \\
\eta_{1} & =\left(1 . \gamma(z)+1 . \sigma\left(\eta_{2}, z\right)+1 . \sigma\left(z, \eta_{2}\right)\right)_{z}^{*} \\
\eta_{2} & =(1 . \gamma(z)+1 . \sigma(z, z))_{z}^{*} \circ_{z} 1 . \alpha
\end{aligned}
$$

$\operatorname{REC}(\mathbb{S})$ is equal to the class of \mathbb{S}-weighted tree languages defined by ...

- weighted regular tree grammar in normal form
- weighted regular tree grammar, if \mathbb{S} allows infinite summation
- weighted rational expressions (Kleene's theorem)
- weighted RMSO-formulas (Büchi's theorem) [Droste, V. 06, 11]
e.g. $L_{\#}: T_{\Sigma} \rightarrow \mathbb{N}, \quad \xi \mapsto \#_{\sigma(., \alpha)}$
$\varphi=\exists x \cdot \operatorname{label}_{\sigma}(x) \wedge\left(\exists y . \operatorname{edge}_{2}(x, y) \wedge \operatorname{label}_{\alpha}(y)\right)$
\vee and \exists are interpreted by \oplus
\wedge and \forall are interpreted by \odot [Droste, Gastin 05]
outline ...
- support of recognizable \mathbb{S}-weighted tree languages
- inductive computation of $L_{\mathcal{A}}$
- determinization, minimization, decidability
- characterization results for $\mathrm{REC}(\mathbb{S})$
- weighted tree automata over other algebras
recall: $\kappa: \operatorname{pos}(\xi) \rightarrow Q$
recall: $\kappa: \operatorname{pos}(\xi) \rightarrow Q$
weight of κ :
${ }_{\mathrm{wt}}^{\mathrm{t}}(\kappa)=\bigodot_{w} \delta(\kappa(w 1) \ldots \kappa(w k), \xi(w), \kappa(w))$
wta over s.r.

recall: $\kappa: \operatorname{pos}(\xi) \rightarrow Q$
weight of κ :
\mathbb{S} commutative
$\mathrm{wt}(\kappa)=\mathrm{wt}\left(\kappa_{1}\right) \odot \ldots \odot \mathrm{wt}\left(\kappa_{k}\right) \odot \delta(\kappa(1) \ldots \kappa(k), \xi(\varepsilon), \kappa(\varepsilon))$
wta over s.r.

recall: $\kappa: \operatorname{pos}(\xi) \rightarrow Q$
weight of κ :
\mathbb{S} commutative
$\mathrm{wt}(\kappa)=\mathrm{wt}\left(\kappa_{1}\right) \odot \ldots \odot \mathrm{wt}\left(\kappa_{k}\right) \odot \delta(\kappa(1) \ldots \kappa(k), \xi(\varepsilon), \kappa(\varepsilon))$
$\mathrm{wt}(\kappa)=\underbrace{\delta(\kappa(1) \ldots \kappa(k), \xi(\varepsilon), \kappa(\varepsilon))}_{\text {operation on } \mathbb{S}}\left(\operatorname{wt}\left(\kappa_{1}\right), \ldots, \operatorname{wt}\left(\kappa_{k}\right)\right)$
wta over multioperator monoids
$(\mathbb{S},+, 0, \Omega)$
[Kuich '99, Maletti '04, Fülöp, Maletti, Stüber, V. 09,10]
recall: $\kappa: \operatorname{pos}(\xi) \rightarrow Q$
weight of κ :
\mathbb{S} commutative
$\mathrm{wt}(\kappa)=\mathrm{wt}\left(\kappa_{1}\right) \odot \ldots \odot \mathrm{wt}\left(\kappa_{k}\right) \odot \delta(\kappa(1) \ldots \kappa(k), \xi(\varepsilon), \kappa(\varepsilon))$
$\mathrm{wt}(\kappa)=\underbrace{\delta(\kappa(1) \ldots \kappa(k), \xi(\varepsilon), \kappa(\varepsilon))}_{\text {operation on } \mathbb{S}}\left(\operatorname{wt}\left(\kappa_{1}\right), \ldots, \operatorname{wt}\left(\kappa_{k}\right)\right)$
$\mathrm{wt}(\kappa)=\operatorname{Val}\left(s_{1}, \ldots, s_{n}\right) ; \quad s_{i}=$ weight of transition
wta over valuation monoids
$(\mathbb{S},+, 0, \mathrm{Val})$
[Droste, Meinecke '11]

Theory of $\operatorname{REC}(\mathbb{S})$ depends on the properties of \mathbb{S}.
hints for further reading:

- [Gecseg, Steinby '84] Tree Automata, Akademiai Kiado.
- [Gecseg, Steinby '97] Tree Languages, in: Handbook of Formal Languages.
- [Comon et al.] Tree Automata Techniques and Applications (TATA), online.
hints for further reading:
- [Gecseg, Steinby '84] Tree Automata, Akademiai Kiado.
- [Gecseg, Steinby '97] Tree Languages, in: Handbook of Formal Languages.
- [Comon et al.] Tree Automata Techniques and Applications (TATA), online.
- [Golan '99] Semirings and Their Applications.
hints for further reading:
- [Gecseg, Steinby '84] Tree Automata, Akademiai Kiado.
- [Gecseg, Steinby '97] Tree Languages, in: Handbook of Formal Languages.
- [Comon et al.] Tree Automata Techniques and Applications (TATA), online.
- [Golan '99] Semirings and Their Applications.
- [Eilenberg '74] Automata, Languages, and Machines, Vol. A.
- [Sakarovitch '03] Elements of Automata Theory.
- eds. Droste, Kuich, V. '09 Handbook of Weighted Automata.
hints for further reading:
- [Gecseg, Steinby '84] Tree Automata, Akademiai Kiado.
- [Gecseg, Steinby '97] Tree Languages, in: Handbook of Formal Languages.
- [Comon et al.] Tree Automata Techniques and Applications (TATA), online.
- [Golan '99] Semirings and Their Applications.
- [Eilenberg '74] Automata, Languages, and Machines, Vol. A.
- [Sakarovitch '03] Elements of Automata Theory.
- eds. Droste, Kuich, V. '09 Handbook of Weighted Automata.
- [Ésik, Kuich '03] Formal Tree Series.
- [Fülöp, V. '09] Weighted Tree Automata and Tree Transducers.

References:

- [Berstel, Reutenauer 88] Rational Series and Their Languages.
- [Borchardt 03] The Myhill-Nerode theorem for recognizable tree series.
- [Borchardt 04] A pumping lemma and decidability problems for recognizable tree series.
- [Bozapalidis 91] Effective construction of the syntactic algebra of a recognizable series on trees.
- [Bozapalidis, Louskou-Bozapalidou 83] The rank of a formal tree power series.
- [Büchse, May, Vogler 10] Determinization of weighted tree automata using factorizations.
- [Ésik, Kuich 03] Formal Tree Series.
- [Droste, Gastin 05] Weighted automata and weighted logics.
- [Droste, Pech, Vogler 05] A Kleene theorem for weighted tree automata.
- [Droste, Vogler 06] Weighted Tree Automata and Weighted Logics.
- [Droste, Vogler 01] Weighted logics for unranked tree automata.
\rightarrow [Fülöp, Maletti, Vogler 09] A Kleene theorem for weighted tree automata over distributive multioperator monoids.
- [Kirsten, Mäurer 05] On the determinization of weighted automata.
- [Kuich 99] Linear systems of equations and automata on distributive multioperator monoids.
- [Maletti 04] Relating tree series transducers and weighted tree automata.
- [Maletti 09] Minimizing deterministic weighted tree automata.
- [Seidl 90] Deciding Equivalence of Finite Tree Automata.
- [Stüber, Vogler, Fülöp 09] Decomposition of weighted multioperator tree automata.

6th International Workshop

Weighted Automata: Theory and Application

May 29 - June 2, 2012, Dresden, Germany

Topics include:

- real-time systems and verification
- natural language processing
- multi-valued logics

Tutorials:

- Javier Esparza and Michael Luttenberger (Munich, Germany)
- Orna Kupferman (Jerusalem, Israel)
- Anoop Sarkar (Burnaby, Canada)

Survey lectures: • Frank Drewes (Umeå, Sweden)

- Zoltán Ésik (Szeged, Hungary)
- Paul Gastin (Cachan, France)
- Laura Kallmeyer (Düsseldorf, Germany)
- Kevin Knight (Los Angeles, USA)
- Kim Larsen (Aalborg, Denmark)
- Karin Quaas (Leipzig, Germany)

Important Dates in 2012:

- submission of abstracts: March 16
- notification of acceptance: March 31
- registration: April 27
- workshop: May 29 - June 2
- submission of papers: July 30

Organizers:

Manfred Droste (Leipzig, Germany) droste@informatik.uni-leipzig.de

Heiko Vogler (Dresden, Germany) Heiko.Vogler@tu-dresden.de
... and a special session honoring Werner Kuich on the occasion of his 70th birthday.

