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Part ISienti� Programme





Tuesday, May 13, 200808:30�09:00 Registration09:00�10:30 K. Knight TutorialAn overview of weighted automata in natural language proessing (I)10:30�11:00 Break11:00�12:00 W. Kuih Survey LetureWhy we need semirings in automata theory12:00�13:30 Lunh13:30�14:30 F. Drewes Survey LetureLearning: from string languages to tree series14:35�15:00 F. Denis, A. Habrard, R. Gilleron, Tehnial ContributionM. Tommasi, É. GilbertOn probability distributions for trees: representations, inferene and learning15:00�15:30 Break15:30�15:55 A. Ekl Tehnial ContributionPredition of subalphabets and ranking in DAWG's for natural languages15:55�16:20 T. Hanneforth, K.-M. Würzner Tehnial ContributionStatistial language models within the algebra of weighted rational languages16:20�16:45 Break16:45�17:10 K. Quaas, M. Droste Tehnial ContributionA Kleene-Shützenberger theorem for weighted timed automata17:10�17:35 D. Kirsten, S. Lombardy Tehnial ContributionDeiding unambiguity and sequentiality from a polynomially ambiguousmin-plus automaton
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Wednesday, May 14, 200808:30�09:00 Registration09:00�10:30 K. Knight TutorialAn overview of weighted automata in natural language proessing (II)10:30�11:00 Break11:00�12:00 W. Martens Survey LetureXML researh for formal language theorists12:00�13:30 Lunh13:30�14:30 A. Maletti Survey LetureMinimization of weighted automata14:35�15:00 E. Mandrali, G. Rahonis Tehnial ContributionWeighted tree automata with disounting15:00�15:30 Break15:30�15:55 Z. Fülöp, M. Steinby Tehnial ContributionVarieties of reognizable tree series over �elds15:55�16:20 Z. Fülöp, L. Muzamel Tehnial ContributionWeighted tree-walking automata16:20�16:45 Break16:45�17:10 C. Mathissen Tehnial ContributionWeighted logis for nested words and algebrai formal power series17:10�17:35 T. Stüber, H. Vogler, Z. Fülöp Tehnial ContributionDeomposition of weighted multioperator tree automata
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Thursday, May 15, 200808:30�09:00 Registration09:00�10:30 Z. Ésik TutorialIteration theories as an axiomati foundation of automata andlanguage theory (I)10:30�11:00 Break11:00�12:00 B. Gerla Survey LetureMany-valued logi and fuzzy automata12:00�13:30 Lunh13:30�14:30 G. Rahonis Survey LetureMulti-valued automata: theory and appliations14:35�15:00 I. Meineke Tehnial ContributionOn the expressive power of a weighted µ-alulus15:00�15:30 Break15:30�15:55 M. �iri¢, A. Stamenkovi¢, Tehnial ContributionJ. Ignjatovi¢, T. Petkovi¢State redution of fuzzy automata15:55�16:20 J. Ignjatovi¢, M. �iri¢, T. Petkovi¢ Tehnial ContributionRelationships between FFA-reognizability and DFA-reognizabilityof fuzzy languages16:20�16:45 Break16:45�18:00 Workshop19:00�open Conferene Dinner
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Friday, May 16, 200808:30�09:00 Registration09:00�10:30 Z. Ésik TutorialIteration theories as an axiomati foundation of automata andlanguage theory (II)10:30�11:00 Break11:00�12:00 S. Gaubert Survey LetureTo be announed12:00�13:30 Lunh13:30�13:55 V. Halava, T. Harju, E. Lehtonen Tehnial ContributionA survey of integer weighted �nite automata13:55�14:20 D. Kuske Tehnial ContributionFrom unweighted to weighted traes � alternative proofs14:20�14:45 S. Shwarz, R. Winter Tehnial ContributionReognizability of iterative piture languages14:45�15:15 Break15:15�15:40 A. Koprowski, J. Waldmann Tehnial ContributionMax/Plus tree automata for termination of term rewriting15:40�16:05 A. Gebhardt, J. Waldmann Tehnial ContributionWeighted automata de�ne a hierarhy of terminating stringrewriting systems16:05�16:15 Break16:15�open Joint Researh
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Part IIAbstrats





Tutorials





Iteration Theories as an Axiomati Foundationof Automata and Language TheoryZoltán ÉsikDept. of Computer Siene, University of SzegedGRLMC, Rovira i Virgily UniversityFixed points and �xed point omputations our in just about every �eld of Computer Siene.They are often used to give semantis to reursion, in automata and language theory, programminglanguages and abstrat data types, onurreny and logi, to mention only a few appliations. Forone familiar example, one an anonially assoiate with eah ontext free grammar a vetor valuedfuntion over the domain of all subsets of the free monoid over the set of terminals, so that thelanguage generated by the grammar beomes a omponent of the least �xed point of the funtion.Typial questions about �xed points are: when do �xed points exist, and what are their proper-ties. There are several �xed point theorems that have found appliations in Computer Siene, eahguaranteeing the existene of ertain anonial �xed points under ertain onditions. Examples ofsuh �xed point theorems are Tarski's �xed point theorem and several of its variants, involvingomplete latties or po's and monotone or ontinuous funtions, ategorial generalizations ofthese theorems, Banah's �xed point theorem involving proper ontrations over omplete metrispaes, et. Regarding the properties of the �xed point operations, it has been shown that all�xed point operations share the same equational laws. Letting these equational laws the axioms,together with some axioms speial to a disipline suh as languages, onurreny, we obtain anaxiomati basis for that disipline. It is then interesting to know how far one an get with theaxiomati approah.The use of equations has several advantages. Proofs an be separated into two parts, wherethe �rst part establishes the equational axioms, and the seond is based on simple equationalreasoning. Suh proofs have a transparent struture and are usually very easy to understand, sinemanipulating equations is one of the most ommon way of mathematial reasoning. Moreover,sine many results depend on the same equations, the �rst part of suh proofs usually provides abasis to several results. Finally, the results obtained by equational reasoning have a muh broadersope, sine many models share the same equations.The aim of this tutorial is to provide an introdution to that part of the theory of �xed pointsthat has appliations to weighted automata. We start with a treatment of �xed points in theordered setting and review some basi theorems guaranteeing the existene of least (or greatest)�xed points. Then we establish several (equational) properties of the least �xed point operationinluding the Beki¢ identity, asserting that systems of �xed point equations an be solved bythe tehnique of suessive elimination. Then we use the Beki¢ identity and some other basilaws to introdue the axiomati frameworks of Conway and iteration theories. We provide severalaxiomatizations of these notions and show that iteration theories apture the equational propertiesof the �xed point operation in a large lass of models.We also treat �xed points of linear funtions over semirings and semimodules. The main resultsshow that for suh funtions, the �xed point operation an be haraterized by a star operation,possibly in onjuntion with an omega operation. We show that the equational properties of the�xed point operation are re�eted by orresponding properties of the star and omega operations.As a main appliation of the theory of �xed points, we will show that Kleene's theorem, be it for-mulated for lassial automata, weighted automata, or weighted tree automata, or Buhi automata,rests on the same axiomatis. As a seond main appliation, we will over the axiomatization ofthe algebra of regular languages and rational power series.
11



An Overview of Weighted Automatain Natural Language ProessingKevin KnightInformation Sienes Institute and Computer Siene DepartmentUniversity of Southern Californiaknight�isi.eduNatural Language Proessing takles a number of pratial problems, e.g.:
• automated language translation (e.g., Chinese to English)
• speeh reognition
• information retrieval
• question answering
• grammar heking
• speeh synthesis
• automati summarizationet.These problems are not solved with onise algorithms alone�rather, solutions must be poweredby tremendous amounts of formalized knowledge about words, pronuniations, syntax, semantis,and the world.Weighted automata form an elegant and satisfying way to represent suh knowledge. Further-more, learning algorithms assoiated with weighted automata permit us to obtain large amountsof linguisti knowledge automatially from online text and speeh orpora.This tutorial will over the use of weighted automata aross many problems in natural languageproessing. We will also illustrate, in depth, major issues in automated language translation, ahallenging problem that requires both analysis of soure-language sentenes and generation ofnew, grammatial target-language sentenes that have never been uttered before.We will also trak historial developments in both automata theory and natural language pro-essing. These two �elds were tightly knit in the middle of the 20th entury, but over time theydrifted apart, with neither theory nor pratie signi�antly informing one another. Finite-statemethods returned to make a dramati impat on natural language in the 1990s, when they wereoupled with automati knowledge aquisition methods. In this entury, tree automata have re-eived renewed interest, being able to apture linguisti transformations (suh as observed innatural language translation data) that pose di�ulties for string-based automata.Finally, we will examine a wide variety of automata models from the point of view of what isneeded in ontemporary pratial natural language systems. We �nd very good synergy�many au-tomata theorems �nd wonderful appliation in language systems (greatly simplifying their design),while demands of pratial systems raise hallenging questions for the theory side.
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Survey Letures





Learning: from String Languages to Tree SeriesFrank DrewesDepartment of Computing Siene, Umeå UniversityS-901 87 Swedendrewes�s.umu.seAbstrat. The talk gives an overview on algorithmi learning, fousing on the �eld ofgrammatial inferene. After a very brief overview on algorithmi learning in general, someof the major models and approahes used in grammatial inferene of string languages areexplained. Finally, grammatial inferene of tree languages and tree series is disussed.1 Algorithmi LearningUnsurprisingly, algorithmi learning is about algorithms that �learn�. However, what does thismean? Usually, researh in this �eld fouses on algorithms that (a) adjust, and thus improve,their behaviour over time or (b) use limited information (suh as training samples) to, eventually,orretly reognize a general onept or ompute a funtion. In fat, this is merely a matter ofperspetive. For example, the bottom line of learning to avoid mistakes is to learn the oneptmistake. Conversely, an algorithm that learns a funtion f from argument-value pairs an be seenas an algorithm that improves its behaviour when being asked for the value of f(x). Furthermore,it is lear that onept learning (e.g., learning the onept `prime number' or `piture of an apple')is a speial ase of funtion learning, namely of learning the harateristi funtion of the onept.Several areas in Computer Siene study aspets of algorithmi learning:(1) Mahine Learning studies learning from the point of view and using the methods of Arti�ialIntelligene.(2) Pattern Reognition is algorithmi learning whenever it is onerned with disovering generalpatterns in input data.(3) Indutive Inferene, an area founded by Solomono� in the years around 1960 [14℄, fouses onlearning a onept or funtion, usually from observations (i.e., examples). Often, statistialmethods are used, and orretness means orretness with a high degree of probability. See [3℄for a survey.(4) Grammatial Inferene addresses the problem of learning formal languages, with the additionalrequirement that the algorithm shall produe an expliit grammatial or automata-theoretirepresentation of the target language. See [7, 10℄ to obtain an initial overview of the �eld.Obviously, these areas are not disjoint from eah other. To some extent, one may see the list aboveas a series of speializations, i.e., (1) ⊇ (2) ⊇ (3) ⊇ (4).Researh in the �eld of algorithmi learning may or may not belong to theoretial omputersiene. The part that does, de�nes the area of Computational Learning Theory (COLT). AsAngluin puts it in her survey [2℄, the goal of COLT is to �give a rigourous, omputationally detailedand plausible aount of how learning an be done.� See also the book by Kearns and Vazirani[11℄.2 Grammatial Inferene of String LanguagesAs mentioned, the purpose of a grammatial inferene algorithm (alled a learner in the following) isto learn a target language L ⊆ Σ∗ by onstruting an appropriate grammar or automaton. Whetherthis is possible depends not only on the lass of languages onsidered, but also on the learningmodel: whih kind of information is available to the learner, how does it get this information, andwhat the riteria of suess? Some of the best-known settings are the following.15



Learning from Examples and Identi�ation in the Limit Gold [8℄ de�nes two of the most naturalsettings for grammatial inferene: learning from text, where the learner is given an exhaustivesequene of positive examples u1, u2, . . . , i.e., L = {u1, u2, . . . }, and learning from an informant,where the sequene ontains both positive and negative examples (u1, b1), (u2, b2), . . . , i.e., {(ui, bi) |
i ∈ N} = L × {1} ∪ L × {0}. Furthermore, Gold proposes a riterion of suess: After eah pieeof information reeived, the learner answers with a new hypothesis hi, being an automaton or agrammar onsistent with the information seen so far. L is identi�ed in the limit if, for some i ∈ N,
hi = hi+1 = · · · and L(hi) = L.Probably Approximately Corret Learning In Valiant's PAC learning [15℄, suess is de�ned in astatistial manner. The learner is given additional parameters δ, ǫ (0 < δ, ǫ < 1), and is thenprovided with examples drawn aording to an unknown probability distribution D. Eventually,it returns the automaton A learned. The error probability of A is err(A) = Prob[u ∈ L△L(A) |
u ∈ Σ∗ drawn aording to D] (where △ denotes symmetri di�erene). Now, the orretness re-quirement is that err(A) ≤ ǫ (approximate orretness) with probability at least δ (i.e, probably).Query learning Angluin [1℄ invented query (or ative) learning, where the learner an ask an orale,the teaher, ertain types of queries. The most popular teaher of this sort is the so-alled minimaladequate teaher (MAT). Given that A is the lass of automata of interest, the learner an askmembership queries : �Does w belong to the target language?� and equivalene queries : �Does A ∈ Arepresent the target language L? If not, give me a ounterexample w ∈ L(A)△L.� Angluin's L∗learner learns any regular language in polynomial time from a MAT, using a modi�ed version ofGold's observation table.3 Inferene of Tree LanguagesResults on regular languages an usually be generalised to regular tree languages, and this istrue even for inferene algorithms. For instane, the notions of k-reversibility, k-testability, andfuntion distinguishability mentioned above an be generalised to regular tree languages, and implye�ient learnability from text. The same holds for Angluin's L∗ learner [13, 5℄. Results like theseare partiularly interesting in view of the negative results regarding the learnability of ontext-freelanguages, as they show that ontext-free languages an be learned if strutural information aboutthe strings in the language is available.Let us brie�y desribe the idea behind the L∗ learner for the tree ase. As usual, a ontext is atree c with a unique ourrene of a variable x, and c · t denotes the tree obtained by substituting
x in c with a tree t. For a (regular) target language L, de�ne the Myhill-Nerode ongruene ≡Lon TΣ by s ≡L t i� c · s ∈ L ⇐⇒ c · t ∈ L for all ontexts c. It is well known that the index of ≡L(i.e., the number of equivalene lasses) is �nite i� L is regular, and that the orresponding uniqueminimal deterministi bottom-up tree automaton AL is obtained by using the ongruene lassesas states.Now, let T be the in�nite table given as follows. The rows (olumns) are indexed by trees t(ontexts c, resp.), and entry T (t, c) is 1 if c · t ∈ L and 0 otherwise. By de�nition, s ≡L t i� therows of s and t are equal. Thus, a �nite subtable of T su�es to de�ne AL, beause there areonly �nitely many pairwise distint rows and olumns. Starting with the empty table T0, the L∗learner builds suh a �nite subtable Tn of T . It repeatedly onstruts the automaton Ai given bythe urrent table Ti to ask an equivalene query. If L(Ai) 6= L, the ounterexample reeived an beused to extend the table by new rows and olumns, yielding Ai+1. Membership queries are mainlyneeded to �ll in new ells of the table. At most index(L) loop exeution are needed to disover AL.4 Inferene of Tree SeriesA natural next step is to extend grammatial inferene algorithms to the ase of tree series ψ : TΣ →
S, for some semiring S. The number of papers addressing this problem is still rather small. One16



may roughly divide them into two ategories. The �rst deals with the speial ase of stohasti treelanguages, i.e., where S is the �eld R, (ψ, t) ∈ [0, 1] for all t ∈ TΣ, and ∑

t∈TΣ
(ψ, t) = 1. Stohastilanguages have reeived partiular interest in natural language proessing. When dealing with thelearnability of stohasti tree languages, it is probably most natural to onsider a learning-from-text-like setting: positive examples are drawn aording to a probability distribution D, and thegoal is to learn D in the limit by, e.g., onstruting a weighted tree automaton (wta). For the asewhere ψ is reognisable, Denis and Habrard have reently presented suh a learner [4℄.The seond ategory of learners works on tree series that are not restrited to stohasti ones.There seem to be only two results of this kind, both using Angluin's MAT model and her generalalgorithmi idea based on an observation table. For this, membership queries are generalised tooe�ient queries : given a tree t ∈ TΣ , the teaher replies with (ψ, t). Of ourse, equivalene querieshave to be extended to the type of wta onsidered. The entries of the observation table are now thevalues (ψ, c·t). One of the learners, proposed by Drewes and Vogler and improved by Maletti [6, 12℄,learns a deterministially reognisable tree series ψ over a ommutative semi�eld by onstrutingthe orresponding minimal deterministi wta. The seond learner, proposed by Habrard and Onina[9℄ learns a reognisable tree series ψ over a �eld, by onstruting the orresponding minimalnondeterministi wta. Note that a �eld is assumed, whih explains why nondeterministi deviesan be learned by Angluin's method, whereas nothing similar has yet been ahieved for the Booleanase, where no appropriate �nite algebrai haraterization is known.Referenes1. Dana Angluin. Learning regular sets from queries and ounterexamples. Information and Computation,75:87�106, 1987.2. Dana Angluin. Computational learning theory: survey and seleted bibliography. In Pro. 24th AnnualACM Symposium on Theory of Computing (STOC 1992), pages 351�369. ACM Press, 1992.3. Dana Angluin and Carl H. Smith. Indutive inferene: Theory and methods. ACM Computing Surveys,15:237�269, 1983.4. François Denis and Amaury Habrard. Learning rational stohasti tree languages. In M. Hutter, R.A.Servedio, and E. Takimoto, editors, Pro. 18th International Conferene on Algorithmi LearningTheory (ALT 2007), volume 4754 of Leture Notes in Computer Siene, pages 242�256, 2007.5. Frank Drewes and Johanna Högberg. Query learning of regular tree languages: How to avoid deadstates. Theory of Computing Systems, 40:163�185, 2007.6. Frank Drewes and Heiko Vogler. Learning deterministially reognizable tree series. Journal of Au-tomata, Languages and Combinatoris, 2008. To appear.7. Henning Fernau and Colin de la Higuera. Grammar indution: An invitation for formal languagetheorists. Formal Grammars, 7:45�55, 2004.8. E. Mark Gold. Language identi�ation in the limit. Information and Control, 10:447�474, 1967.9. Amaury Habrard and José Onina. Learning multipliity tree automata. In Y. Sakakibara,S. Kobayashi, K. Sato, T. Nishino, and E. Tomita, editors, Pro. 8th International Colloquium onGrammatial Inferene: Algorithms and Appliations (ICGI 2006), volume 4201 of Leture Notes inComputer Siene, pages 268�280, 2006.10. Colin de la Higuera. A bibliographial study of grammatial inferene. Pattern Reognition, 38:1332�1348, 2005.11. Mihael J. Kearns and Umesh V. Vazirani. An Introdution to Computational Learning Theory. MITPress, 1994.12. Andreas Maletti. Learning deterministially reognizable tree series � revisited. In S. Bozapalidis andG. Rahonis, editors, Pro. 2nd International Conferene on Algebrai Informatis (CAI 2007), volume4728 of Leture Notes in Computer Siene, pages 218�235, 2007.13. Yasubumi Sakakibara. Learning ontext-free grammars from strutural data in polynomial time. The-oretial Computer Siene, 76:223�242, 1990.14. Ray Solomono�. A formal theory of indutive inferene, parts I and II. Information and Control,7:1�22 and 224�254, 1964.15. Leslie G. Valiant. A theory of the learnable. Communiations of the ACM, 27:1134�1142, 1984.17



Many-valued logi and fuzzy automataBrunella GerlaDept. Informatis and Communiations, University of Insubria21100 Varese, Italybrunella.gerla�uninsubria.itIn the last deades, the interest in fuzzy sets and fuzzy logi has grown from di�erent points ofview. From one side, many engineering appliations have been proposed based on the use of fuzzysets as a tool to solve non-linear phenomena through a linguisti representation. From another side,fuzzy sets have motivated a renewed interest in truth-funtional logis with an enlarged set of truthvalues. Indeed a deep study of suh logis has being portrayed in the last years and many-valuedlogi has been proposed to model phenomena in whih unertainty and vagueness are involved.Very general lasses of many-valued propositional logis are the Basi logi de�ned in [8℄ asthe logi of ontinuous t-norms and the MTL logi de�ned in [7℄ as the logi of left-ontinuoust-norm. We shall give a few details on suh strutures. Speial ases of propositional many-valuedlogis are �ukasiewiz, Gödel and Produt logi. In partiular �ukasiewiz logi has been deeplyinvestigated, together with its algebrai ounterpart, MV-algebras, introdued by Chang in [1℄to prove ompleteness theorem of �ukasiewiz logi. MV-algebras an be thought of as a speialgeneralization of Boolean algebras in whih the idempoteny of onjuntion and the exludedmiddle low are not valid.MV-algebras have nie algebrai properties and an be onsidered as intervals of lattie-orderedgroups. �ukasiewiz disjuntion and onjuntion are interpreted by the operations ⊕ and ⊙ of theMV-algebra [0, 1] given by
x⊕ y = min{1, x+ y}, x⊙ y = max{0, x+ y − 1}.In spite of satisfying theoretial results regarding �ukasiewiz logi, all the attempts to use it asan instrument to deal with unertainty phenomena, for example in the fuzzy ontext, had to dealwith one of its main harateristi: onjuntion and disjuntion do not distribute one with respetto the other. This makes di�ult to use it as a generalization of Boolean logi.We stress that operations ⊙ and ⊕ in any MV-algebra A both are related to the same operationin the lattie ordered group assoiated with A. In order to model the notion of onjuntion anddisjuntion one have instead to onsider a lattie operation ∧ (or dually, ∨) together with theMV-algebrai operation ⊕ (or dually ⊙). MV-algebras have many semiring reduts, as for examplethose given by onsidering operations ⊙,∨ or operations ⊕,∧ or even ∧,∨.MV-algebras operations have symmetri properties, sine the negation in an MV-algebra A isatually an isomorphism of the monoid (A,⊙, 1) onto (A,⊕, 0) (indeed MV-algebras are De Morganalgebras). In general, other strutures related with other many-valued logis do not have suh asymmetry. Nevertheless, eah of these strutures has a semiring redut.In [2℄ we suggested to onsider the pairs of onnetives forming the semiring reduts of MV-algebras in order to handle the mathematis behind many fuzzy systems. This approah has beenthen extended to a generalization of linear algebra to a fuzzy ontext in [3℄.In order to show in whih way this representation an be useful to model fuzzy phenomena wegive examples in the �eld of automata following the approah of [6℄, where semirings have beenproposed to give a generalization of automata, the so alled K-Σ- automata.

K-Σ- automata an be onsider as fuzzy automata, in the sense that are non-deterministiautomata in whih every transition from one state to another happens with some degree. Then eahword is reognized with a degree that must be omputed by the degrees of the single transitions,hene eah fuzzy automaton aepts a fuzzy language, that is a fuzzy subset of the set of all �nitewords over a given alphabet.More reently, automata with values in semirings over the natural numbers or the real numberssets have been deeply investigated both to �nding results on nondeterminism or in�nite behavior of18



�nite automata, in the ontext of formal power series and of weighted automata (see [4℄,[5℄,[9℄, [10℄).We shall give a desription of automata having values in semirings assoiated with BL-algebrasand MV-algebras.Referenes1. C.C. Chang. Algebrai analysis of many valued logis. Trans. Amer. Math. So., 88:467�490, 1958.2. A. Di Nola and B. Gerla. Algebras of �ukasiewiz's logi and their semiring reduts. Journal of Algebraand its Appliations, 5:417�439, 2006.3. A. Di Nola, A. Lettieri, I. Per�lieva and V. Novák. Algebrai analysis of fuzzy systems, Fuzzy Sets andSystems, 158:1-22, 2007.4. M. Droste, P. Gastin. Wighted Automata and Wieghted Logis. Theoretial Computer Siene, 380:513�525, 2007.5. M. Droste, W. Kruih, G. Rahonis. Multi-valued MSO logis over words and trees Fundamenta Infor-matiae, 2008, to appear.6. S. Eilenberg. Automata, Languages, and Mahines. Aademi Press, 1974.7. Esteva, F., Godo, L.: Monoidal t-norm based logi: towards a logi for left-ontinuous t-norms. FuzzySets ans Systems. 124:271�288, 2001.8. P. Hájek, Metamathematis of fuzzy logi. Dordreht: Kluwer Aademi Publishers, 1998.9. D. Krob. Some automata-theoreti aspets of min-max-plus semirings. In J. Gunawardena, editor.Idempoteny Analysis. Cambridge University Press, 1998.10. I. Simon. Reognizable sets with multipliities in the tropial semiring. In M.P.Chytil et al., editor,Let. Notes in Comput. Si., number 324, pages 107�120, 1988.
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Why we need semirings in automata theoryWerner KuihTehnishe Universität Wienkuih�tuwien.a.atThe use of semirings, formal power series, matries and �xed point theory in formal languageand automata theory yields the following advantages:(i) The onstrutions needed in the proofs are mainly the usual ones.(ii) The desriptions of the onstrutions by formal series and matries do not need as muhindexing as the usual desriptions.(iii) The proofs are separated from the onstrutions and do not need the intuitive ontents of theonstrutions. Often they are shorter than the usual proofs.(iv) The results are more general than the usual ones. Depending on the semiring used, the re-sults are valid for lassial grammars and automata, lassial grammars and automata withambiguity onsiderations, probabilisti grammars or automata, et.(v) The use of formal power series and matries gives insight into the mathematial struture ofproblems and yields new results and solutions to unsolved problems that are di�ult, if notimpossible, to obtain by other means.In our leture we give examples that illustrate these advantages.
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Minimization of Weighted AutomataAndreas Maletti⋆International Computer Siene InstituteBerkeley, CA 94704, USAmaletti�isi.berkeley.eduWeighted automata are used in a variety of appliations (e.g., natural language proessing,probabilisti model heking, et). We will review minimization algorithms for weighted automatawith a strong emphasis on tree automata. In addition, partial but e�ient minimization proeduressuh as bisimulation minimization are onsidered. Speial attention will be given to the runtimeomplexity of the algorithms and whenever available we will substantiate the results with pratialexperiene gained from implementations.

⋆ Author on leave from Tehnishe Universität Dresden, Faulty of Computer Siene, 01062 Dresden,Germany, with the help of �nanial support by a DAAD (German Aademi Exhange Servie) grant.21



XML Researh for Formal Language TheoristsWim MartensTehnial University of Dortmundwim.martens�udo.eduFormal Language Theory plays a dominant role in XML researh. The design of the predominantXML shema languages is based on ontext-free grammars and tree automata, and widely usednavigation and transformation languages suh as XPath and XSLT are losely tied to regularexpressions and tree transduers. The investigation of these shema and query languages thereforesigni�antly bene�ts from the large orpus of results in Formal Language Theory.Conversely, XML researh is also a motivation and a soure of inspiration for Formal LanguageTheory. Stati analysis questions in XML researh, for instane, motivate the deeper study ofproblems suh as membership testing, ontainment, equivalene, and minimization for variousforms of regular expressions and �nite automata.I will give an overview of this synergy between XML researh and Formal Language Theory.
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Multi-valued automata: theory and appliationsGeorge RahonisDepartment of Mathematis, Aristotle University of Thessaloniki54124 Thessaloniki, Greeegrahonis�math.auth.grWe presentmulti-valued automata over bounded distributive latties ating on �nite words. Theyonstitute a speial sublass of weighted automata over arbitrary semirings, and they have nieproperties due to the lattie operations. For instane for every multi-valued automaton we an e�e-tively onstrut an equivalent deterministi one, whih moreover an be minimized. Furthermore,the equivalene problem is deidable for the behaviors of multi-valued automata. If the underlyinglattie has a negation funtion, then we an show the expressive equivalene of multi-valued au-tomata with multi-valued monadi seond order sentenes (f. [1℄ for a more general treatment).Usual fuzzy automata over the interval [0, 1] is a great paradigm of multi-valued automata.We deal also with multi-valued Bühi and Muller automata investigated in [2℄. By extendinga well-known result for lassial automata on in�nite words, we prove that the families of thebehaviors of the two models oinide. We show the expressive equivalene of our automata withmulti-valued monadi seond order sentenes provided that the underlying lattie has a negationmapping. Then, we ompare our models with the Bühi lattie automata of Kupferman and Lustig[3℄. A sublass of Bühi lattie automata, whih in fat oinides with our multi-valued Bühiautomata over De Morgan algebras, is related to lattie linear temporal logi whih in turn isrelated to important multi-valued model heking appliations. We investigate the relation amongthe multi-valued monadi seond order logi and the lattie linear temporal logi. On the otherhand, we highlight future researh lines motivated by the following fat. A ritial point for the(multi-valued) automata-theoreti approah of (multi-valued) model heking, is the omplexitybound for the onstrutions on (multi-valued) automata. For instane, we are interested in theomplexity bound for omplementing (multi-valued) automata over in�nite words. It turns out thatseveral onstrutions on our multi-valued Muller automata [2℄ have muh lower omplexity boundsthan the orresponding ones for Bühi lattie automata [3℄. Therefore, it should be interesting toinvestigate the ontribution of multi-valued Muller automata to the automata-theoreti approahof multi-valued model heking.Referenes1. M. Droste, P. Gastin, Weighted automata and weighted logis, Theoret. Comput. Si. 380(2007) 69-86;extended abstrat in: Proeedings of ICALP 2005, LNCS 3580(2005) 513-525.2. M. Droste, W. Kuih, G. Rahonis, Multi-valued MSO logis over words and trees, Fund. Inform., inpress.3. O. Kupferman, Y. Lustig, Lattie automata, in: Proeedings of VMCAI 2007, LNCS 4349(2007) 199-213.
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State Redution of Fuzzy AutomataMiroslav �iri¢1, Aleksandar Stamenkovi¢1, Jelena Ignjatovi¢1, Tatjana Petkovi¢21Faulty of Sienes and Mathematis, University of Ni²Vi²egradska 33, 18000 Ni², Serbiajejaign�yahoo.om, irim�bankerinter.net2NokiaJoensuunkatu 7, FIN-24100 Salo, Finlandtatjana.petkovi�nokia.omIn this talk we will present the results from [1, 2℄ onerning state redution of fuzzy automata. Ithas been shown in [1, 2℄ that the size redution problem for fuzzy automata is related to the problemof solving a partiular system of fuzzy relation equations. This system onsists of in�nitely manyequations, and �nding its general solution is a very di�ult task. From that reason we onsiderertain speial ases. One of them is a �nite system whose solutions, alled right invariant fuzzyequivalenes, are ommon generalizations of right invariant or well-behaved equivalenes used inredution of non-deterministi automata, and ongruenes on fuzzy automata studied in [8℄. Aproedure for onstruting the greatest right invariant fuzzy equivalene ontained in a given fuzzyequivalene has been given in [1℄, and it has been shown that the method for redution of fuzzyautomata based on right invariant fuzzy equivalenes gives better results than all other methodsdeveloped in [3�8℄.In [2℄, an analogue of a right invariant fuzzy equivalene, alled a left invariant fuzzy equivalene,has been onsidered. It has been shown that the ombination of redution methods based on rightinvariant and left invariant fuzzy equivalenes an give better results than using only one of thesemethods. It has been also proved that using quasi-orders an give even better results than usingfuzzy equivalenes.Aknowledgment. Researh supported by Ministry of Siene, Republi of Serbia, Grant No.144011Referenes1. �iri¢, M., Stamenkovi¢, A., Ignjatovi¢, J., Petkovi¢, T.: Fatorization of fuzzy automata. In: Csuhaj-Varju, E., Ésik, Z. (eds.), FCT 2007. Leture Notes in Computer Siene, vol. 4639, pp. 213�225.Springer, Heidelberg (2007)2. �iri¢, M., Stamenkovi¢, A., Ignjatovi¢, J., Petkovi¢, T.: Fuzzy relation equations and redution of fuzzyautomata. submitted for publiation3. Basak, N.C., Gupta, A.: On quotient mahines of a fuzzy automaton and the minimal mahine. FuzzySets and Systems 125, 223�229 (2002)4. Cheng, W., Mo, Z.: Minimization algorithm of fuzzy �nite automata. Fuzzy Sets and Systems 141,439�448 (2004)5. Lei, H., Li, Y.M.: Minimization of states in automata theory based on �nite lattie-ordered monoids.Information Sienes 177, 1413�1421 (2007)6. Malik, D.S., Mordeson, J. N., Sen, M.K.: Minimization of fuzzy �nite automata. Information Sienes113, 323�330 (1999)7. Mordeson, J.N., Malik, D.S.: Fuzzy Automata and Languages: Theory and Appliations. Chapman &Hall/CRC, Boa Raton, London (2002)8. Petkovi¢, T.: Congruenes and homomorphisms of fuzzy automata. Fuzzy Sets and Systems 157, 444�458 (2006)
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On Probability Distributions for Trees:Representations, Inferene and LearningFrançois Denis1, Amaury Habrard1, Rémi Gilleron2,Mar Tommasi2, Édouard Gilbert31Laboratoire d'Informatique Fondamentale de Marseille (L.I.F.)UMR CNRS 6166 � http://www.lif.univ-mrs.fr2INRIA Futurs and Lille University, LIFL, Mostrare Projethttp://www.grappa.univ-lille3.fr/mostrare3ÉNS de Cahan, Brittany extensionINRIA Futurs and Lille University, LIFL, Mostrare ProjetWe study probability distributions over free algebras of trees. Probability distributions an beseen as partiular (formal power) tree series [2, 7℄, i.e. mappings from trees to a semiring K. Awidely studied lass of tree series is the lass of rational (or reognizable) tree series whih an bede�ned either in an algebrai way or by means of multipliity tree automata. We argue that thealgebrai representation is very onvenient to model probability distributions over a free algebra oftrees. First, as in the string ase, the algebrai representation allows to design learning algorithmsfor the whole lass of probability distributions de�ned by rational tree series. Note that learningalgorithms for rational tree series orrespond to learning algorithms for weighted tree automatawhere both the struture and the weights are learned. Seond, the algebrai representation an beeasily extended to deal with unranked trees (like xml trees where a symbol may have an unboundednumber of hildren). Both properties are partiularly relevant for appliations: nondeterministiautomata are required for the inferene problem to be relevant (reall that Hidden Markov Modelsare equivalent to nondeterministi string automata); nowadays appliations for Web InformationExtration, Web Servies and doument proessing onsider unranked trees.1 Representation IssuesTrees, either ranked or unranked, arise in many appliation domains to model data. For instanexml douments are unranked trees; in natural language proessing (NLP), syntati struture anoften be onsidered as treelike. From a mahine learning perspetive, dealing with tree strutureddata often requires to design probability distributions over sets of trees. This problem has beenaddressed mainly in the NLP ommunity with tools like probabilisti ontext free grammars [8℄.Weighted tree automata and tree series are powerful tools to deal with tree strutured data. Inpartiular, probabilisti tree automata and stohasti series, whih both de�ne probability distri-butions on trees, allow to generalize usual tehniques from probabilisti word automata (or hiddenmarkov models) and series.Tree Series and Weighted Tree Automata In these �rst two paragraphs, we only onsider the aseof ranked trees. A tree series is a mapping from the set of trees into some semiringK. Motivated byde�ning probability distributions, we mainly onsider the ase K = R. A reognizable tree series [2℄
S is de�ned by a �nite dimensional vetor spae V over K, a mapping µ whih maps every symbolof arity p into a multilinear mapping from V p into V (µ uniquely extends into a morphism fromthe set of trees into V ), and a linear form λ. S(t) is de�ned to be λ(µ(t)). Tree series an alsobe de�ned by weighted tree automata (wta). A wta A is a tree automaton in whih every rule isgiven a weight in K. For every run r on a tree t (omputation of the automaton aording to rulesover t), a weight A(t, r) is omputed multiplying weights of rules used in the run and the �nalweight of the state at the root of the tree. The weight A(t) is the sum of all A(t, r) for all runs rover t. 28



For ommutative semirings, reognizable tree series in the algebrai sense and in the automatasense oinide beause there is an equivalene between summation at every step and summationover all runs. It an be shown, as in the string ase, that the set of reognizable tree series de�nedby deterministi wta is stritly inluded in the set of reognizable tree series. A Myhill-NerodeTheorem an be de�ned for wta over �elds [1℄.Probability Distributions and Probabilisti Tree Automata A probability distribution S over trees isa tree series suh that, for every t, S(t) is between 0 and 1, and suh that the sum of all S(t) is equalto 1. Probabilisti tree automata (pta) are wta verifying normalization onditions over weights ofrules and weights of �nal states. They extend probabilisti automata for strings and we reall thatnondeterministi probabilisti string automata are equivalent to hidden Markov models (hmms).As in the string ase [5℄, not all probability distributions de�ned by wta an be de�ned by pta.However, we have proved that any distribution de�ned by a wta with non-negative oe�ients ande�ned by a pta, too.While in the string ase, every probabilisti automaton de�nes a probability distribution, thisis no longer true in the tree ase. Similarly to probabilisti ontext-free grammars [9℄, probabilistiautomata may de�ne inonsistent (or improper) probability distributions: the probability of alltrees is less than one. We have de�ned a su�ient ondition for a pta to de�ne a probabilitydistribution and a polynomial time algorithm for heking this ondition.Towards unranked trees Until this point, we only have onsidered ranked trees. However, unrankedtrees an be expressed by ranked ones using an isomorphism de�ned by an algebrai formula-tion ([3℄, hapter 8). It onsists in using the right adjontion operator de�ned by f(t1, . . . , tn−1)@tn =
f(t1, . . . , tn); any tree an then be written as an expression whose only operator is @, and thus asa binary tree: e.g., b(a, a, c(a, a)) orresponds to @(@(@(b, a), a),@(@(c, a), a)). wta for unrankedtrees an be de�ned as wta for ranked trees applied to the algebrai formulation. We all suhautomata weighted stepwise tree automata (wsta).Hedge automata are automata for unranked trees. Eah rule of a hedge automaton [3℄ is written
f(L) → q where L is a regular language of word with the set of states of the automata as itsalphabet. For weighted hedge automata (wha), the weight of the rule f(u) → q is the produtof a weight given to the whole rule f(L) → q and the weight of u aording to a weighted wordautomata assoiated to f(L) → q. When K is ommutative, wsta and wha de�ne the same weightdistributions on unranked trees.Probabilisti hedge automata an be de�ned by adding the same kind of summation onditionsthan on wha, but it has yet to be shown that they an be expressed by pta through algebraiformulation. We don't know yet weither de�ning series on unranked trees diretly is possible,although it an be ahieved using the algebrai formulation.2 Learning Probability DistributionsInferene and Training pta an be onsidered as generative models for trees. The two lassialinferene problems are : given a pta A and given a tree t, ompute p(t) whih is de�ned to thesum over all of all p(t, r); and given a tree t, �nd the most likely (or Viterbi) labeling (run) r̂ for t,i.e. ompute r̂ = arg maxr p(r|t). It should be noted that the inferene problems are relevant onlyfor nondeterministi pta. The training problem is: given a sample set S of trees and a pta, learnthe best real-valued parameter vetor (weights assigned to rules and to states) aording to someriteria. For instane, the likelihood of the sample set or the likelihood of the sample over Viterbiderivations. Classial algorithms for inferene (the message passing algorithm) and learning (theBaum-Welh algorithm) an be designed for pta over ranked trees and unranked trees.Learning Weighted Automata The learning problem extends over the training problem. Indeed,for the training problem, the struture of the pta is given by the set of rules and only weightshave to be found. In the learning problem, the struture of the target automaton is unknown. The29



learning problem is: given a sample set S of trees drawn aording to a target rational probabilitydistribution, learn a wta aording to some riteria. If the probability distribution is de�ned by adeterministi pta, a learning algorithm extending over the unweighted ase has been de�ned in [4℄.However, this algorithm works only for deterministi pta. We reall that the lass of probabilitydistributions de�ned by deterministi pta is stritly inluded in the lass of probability distributionsde�ned by pta [1℄.Learning Reognizable Tree Series and thus learning wta an be ahieved thanks to an algorithmproposed by Denis and Habrard [6℄. This algorithm, whih bene�ts from the existene of a anoniallinear representation of series, an be applied to series whih take their values in R or Q to learnstohasti tree languages. It should be noted that the algebrai view allows to learn probabilitydistributions de�ned by nondeterministi wta. Learning probability distributions for unrankedtrees is ongoing work.Referenes1. Björn Borhardt. The myhill-nerode theorem for reognizable tree series. In Zoltán Ésik and ZoltánFülöp, editors, Developments in Language Theory, volume 2710 of Leture Notes in Computer Siene,pages 146�158. Springer Verlag, 2003.2. Jean Berstel and Christophe Reutenauer. Reognizable formal power series on trees. TheoretialComputer Siene, 18:115�148, 1982.3. H. Comon, M. Dauhet, R. Gilleron, F. Jaquemard, D. Lugiez, S. Tison, and M. Tommasi. Treeautomata tehniques and appliations. Available on: http://www.grappa.univ-lille3.fr/tata, 1997.4. Rafael C. Carraso, José Onina, and Jorge Calera-Rubio. Stohasti inferene of regular tree lan-guages. Mahine Learning, 44(1/2):185�197, 2001.5. François Denis, Yann Esposito, and Amaury Habrard. Learning rational stohasti languages. InGabor Lugosi and Hans Ulrih Simon, editors, Learning theory, Leture Notes in Computer Siene.Springer Verlag, 2006.6. François Denis and Amaury Habrard. Learning rational stohasti tree languages. In Markus Hut-ter, Roo A. Servedio, and Eiji Takimoto, editors, Algorithmi Learning Theory, 18th InternationalConferene, volume 4754 of Leture Notes in Arti�ial Intelligene, pages 242�256. Springer Verlag,2007.7. Z. Esik and W. Kuih. Formal tree series. Journal of Automata, Languages and Combinatoris, 8:219� 285, 2003.8. C. Manning and H. Shütze. Foundations of Statistial Natural Language Proessing. MIT Press,Cambridge, 1999.9. C. S. Wetherell. Probabilisti languages: A review and some open questions. ACM Comput. Surv.,12(4):361�379, 1980.
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Predition of Subalphabets and Rankingin DAWG's for Natural LanguagesAlexander EklLehrstuhl für Informatik II, Universität WürzburgAm Hubland, 97074 Würzburg, Germanyekl�informatik.uni-wuerzburg.deA new ompressed representation of DAWG's (direted ayli word graphs [2℄) was developedfor large sets of words for natural languages. The representation was used in appliations likenavigation in large digital enylopedias or searh appliations, e. g. with up to more than 800,000words.The advantage of a DAWG is the fast aess time for stored words (O(n) with n: maximumlength of the stored words). But the disadvantage is the memory onsumption, espeially if theDAWG is naively implemented by an array of |Σ| pointers for eah node (|Σ| × 4 B per node),where |Σ| is the size of the underlying alphabet. This is partiularly true for natural languages,e. g. with alphabets of size 30 to 100, sine in this ase eah node has, as an average, only a fewhildren and most of the stored pointers are null.One possible solution for the memory problem is the usage of bit vetors for eah DAWG node.A bit in the vetor of size |Σ| is set if and only if the son of the orresponding harater exists.For eah node a bit vetor and, optionally, pointers to existing sons and weights for ranking of therepresented words are stored.A new approah was developed for DAWG's with large alphabets. The tehnique was derivedfrom text ompression with �nite ontext models. Algorithms like the PPM family (preditionby partial mathing [1℄, [3℄) are using preeding haraters to predit and ompress the followingharaters of a text. For example, in English texts it is very probable that q is followed by u. PPMis one of the best methods for text ompression.In an analogous manner the haraters preeding a DAWG node are used to predit the loalsubalphabet of a node and a muh smaller bit vetor has to be stored.Referenes1. J. G. Cleary and I. H. Witten. Data ompression using adaptive oding and partial string mathing.IEEE Transations on Communiations, 32:396�402, April 1984.2. M. Crohemore and R. Vérin. Diret onstrution of ompat direted ayli word graphs. InA. Apostolio and J. Hein, editors, Proeedings of the 8th Annual Symposium on Combinatorial PatternMathing, number 1264, pages 116�129, Aarhus, Denmark, 1997. Springer-Verlag, Berlin.3. A. Mo�at. Implementing the PPM data ompression sheme. IEEE Transations on Communiations,38:1917�1921, 1990.
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Weighted Tree-Walking Automata⋆Zoltán Fülöp and Loránd MuzamelDepartment of Foundations of Computer Siene, University of SzegedÁrpád tér 2., H-6720 Szeged, Hungary
{fulop,muzamel}�inf.u-szeged.huThe onept of a tree-walking automaton (for short: twa) was introdued in [1℄ for modellingthe syntax-direted translations from strings to strings. Reently its importane grew in XMLtheory. A twa A is a sequential �nite-state tree aeptor with �nitely many transition rules, whih,obeying its state-behaviour, walks along the edges of an input tree s ∈ TΣ, where Σ is the inputranked alphabet of A. Then A aepts s if there is an aepting run on s, i.e., a �nite walk on sfrom the initial state to the aepting state. The tree language reognized by a twa is e�etivelyregular, however there exists a regular tree language that annot be reognized by any twa [2℄.There are several extensions of twa whih still reognize regular tree languages, suh as twa withweak pebbles [4℄, strong pebbles [5℄ and also invisible pebbles [6℄.We introdue the weighted version of a twa. In a weighted tree-walking automaton A (for short:wtwa), every transition rule has a weight taken from a ommutative semiring K. We assume that

A is nonirular, i.e., it does not enter into a loop of transitions. The weight of a run of A onan input tree s is the produt of the weights of the applied transition rules, while the weight of somputed by A is the sum of the weights of all the aepting runs of A on s. Sine A is nonirular,it has only �nitely many aepting runs on s. In this way, A reognizes a tree series SA : TΣ → K,where SA(s) is the weight of s for every input tree s.We investigate the reognizing power of wtwa. For this we onsider the redued weighted MSOlogi of [3℄ whih haraterize e�etively the lass of regular tree series over a ommutative semiring.We show that the tree series reognizable by nonirular wtwa an be de�ned in redued weightedMSO logi.Referenes1. A. V. Aho and J. D. Ullman. Translations on a ontext�free grammar. Inform. Control, 19:439�475,1971.2. M. Boja«zyk and T. Colombet. Tree-walking automata do not reognize all regular languages. InProeedings of the thirty-seventh annual ACM symposium on Theory of omputing (STOC '05), pages234�243, New York, NY, USA, 2005. ACM Press.3. M. Droste and H. Vogler. Weighted tree automata and weighted logis. Theoret. Comput. Si.,366:228�247, 2006.4. J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In Jewels are Forever, Contribu-tions on Theoretial Computer Siene in Honor of Arto Salomaa, pages 72�83, London, UK, 1999.Springer-Verlag.5. J. Engelfriet and Hendrik Jan Hoogeboom. Automata with nested pebbles apture �rst-order logiwith transitive losure. Tehnial Report 05-02, Leiden University, The Netherlands, April 2005.6. Joost Engelfriet, Hendrik Jan Hoogeboom, and Bart Samwel. Xml transformation by tree-walkingtransduers with invisible pebbles. In Proeedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Priniples of database systems (PODS '07), pages 63�72, New York, NY,USA, 2007. ACM Press.
⋆ This researh was supported by the Hungarian Sienti� Fund.32



Varieties of Reognizable Tree Series over Fields⋆Zoltán Fülöp1 and Magnus Steinby21Department of Foundations of Computer Siene, University of SzegedÁrpád tér 2., H-6720 Szeged, Hungaryfulop�inf.u-szeged.hu2Department of Mathematis, University of TurkuFIN-20014 Turku, Finlandsteinby�utu.fiOur aim is to develop a theory of varieties of weighted tree languages. More spei�ally, weonsider varieties of tree series of the kind studied by Berstel and Reutenauer [1℄, i.e., tree seriesover a �eld.Let K be a �eld, Σ a ranked alphabet and X a leaf alphabet. Then a KΣX-tree series is amap S : TΣ(X) → K, where TΣ(X) is the set of ΣX-trees, and a KΣ-algebra is a system C =
(C,+, 0, Σ), where (C,+, 0) is a K-vetor spae and eah symbol σ ∈ Σ is realized as a multilinearoperation on C of the appropriate arity. Our syntati algebras of tree series are essentially thoseonsidered in [2℄ and derived from the orresponding notion for string series [4℄. Hene, the syntati
KΣ-algebra SA(S) of a reognizableKΣX-tree series S is a �nite-dimensionalKΣ-algebra. Ratherthan using syntati ideals as in [4, 2℄, we start with syntati ongruenes that have a more obviousintuitive meaning. Similarly as in the ase of ordinary tree languages (f. [5℄), it is onvenient topresent the basi theory of syntati ongruenes and syntati algebras for series over general
Σ-algebras.A variety of KΣ-tree series is a family V = {V(X)}X of tree series with ertain natural losureproperties, where for eah X , V(X) is a set of reognizable KΣX-tree series. The variety theorem,akin to Eilenberg's [3℄ fundamental theorem, establishes � via syntati algebras � a orrespondenebetween them and varieties of �nite-dimensional KΣ-algebras.Referenes1. Berstel, J. and Reutenauer, C.: Reognizable power series on trees. Theoretial Computer Siene 18(1982), 115�148.2. Bozapalidis, S. and Alexandrakis, A.: Representation matriielles de séries d'arbre reonnaissables.Theoretial Informatis and Appliations 23(4) (1989), 449�459.3. Eilenberg, S.: Automata, Languages, and Mahines. Vol. B., Aademi Press, New York 1976.4. Reutenauer, C.: Séries formelles et algèbres syntatiques. Journal of Algebra 66 (1980), 448�483.5. Steinby, M.: A theory of tree language varieties. Tree Automata and Languages (eds. M. Nivat and A.Podelski), North-Holland, Amsterdam 1992, 57�81.

⋆ This researh was supported by the Hungarian Sienti� Fund.33



Weighted Automata De�ne a Hierarhy ofTerminating String Rewriting SystemsAndreas Gebhardt and Johannes WaldmannHohshule für Tehnik, Wirtshaft und Kultur (FH) LeipzigFb IMN, PF 30 11 66, D-04251 Leipzig, GermanyRewriting is pattern replaement in ontext. It serves as a model of omputation whih is Turing-omplete. Thus all �interesting� semanti properties are undeidable, inluding the very naturalquestion of termination: for a given rewriting system, are all derivations �nite? Sine the problemis signi�ant in pratie, e.g. for the analysis of software, one is interested in semi-algorithms:omputable methods of proving termination that are sound, but not omplete.One suh method to prove termination of string rewriting is �matrix interpretation� [HW06℄.These interpretations are in fat N-weighted �nite automata. The method has been generalizedfrom string rewriting to term rewriting [EWZ06℄. Several automated termination provers nowimplement this method.The method in fat solves a more general problem: that of relative termination. A rewritingsystem R terminates relative to a rewriting system S if eah mixed derivation (ontaining R and Ssteps in any order) ontains only �nitely many R steps. While being an interesting onept in itself,relative termination helps to solve standard termination problems beause it allows to omposetermination proofs: if R terminates relative to S then termination of R∪S follows from terminationof S, and the latter an be proved separately. This orresponds to a lexiographi ombination ofinterpretations.One diretion for extension of the matrix method is to pik a weight semi-ring that stritlyinludes N. In [GHW07℄ we reported on some experiments with non-negative rationals. In thepresent note, we provide a basis for a systemati approah to ompare these (and other) terminationmethods, by de�ning a suitable hierarhy, and we prove some of its properties.Automata and Rewriting Systems. A weighted automaton A is alled weakly (stritly, resp.) om-patible with a rewriting system R if for eah rewrite step u→R v, the sequene of weights A(u), A(v)omputed by the automaton is weakly (stritly, resp.) dereasing.There is a loal riterion on A that an e�etively be heked and that implies ompatibility asde�ned here. Basially, it is enough to ompare interpretations of left-hand sides and right-handsides of rules (as matries).If an automaton A with a well-founded weight domainW is stritly ompatible with a rewritingsystem R and weakly ompatible with a rewriting system S, then R is terminating relative to S.A Notation for Termination Proofs by Rule Removals. We denote by M(W,n) the set of pairs ofrewriting systems (R,S) for whih an automaton exists with weight domain W and n states thatis stritly ompatible with R \ S and weakly ompatible with S. We also write R M(W,n)
S. Thisnotation indiates that the termination problem of R an be redued to the termination problemof S by removing the rules in R \ S due to an interpretation omputed by an automaton with thegiven parameters.The relational notation also suggests omposability. For any sequene of rewriting systems Riand relations Pi, from R0

P1

. . .
Pn

Rn it follows that R0 \ Rn terminates relative to Rn. If
Rn = ∅, then R0 terminates.If P1 = . . . = Pn = P , we write R0

P ∗
Rn or (R0, Rn) ∈ P ∗.We abbreviate ∪n≥1M(W,n) by M(W ). Then in our notation M(N) is the set of all rewrit-ing systems that have a one-step termination proof using some natural-weighted automaton, and

M(N)∗ is the set of all systems with a multi-step termination proof using suh automata.34



Number of States. For eah d ≤ d′, M(W,d) ⊆ M(W,d′). This follows easily sine we an introdueuseless states in an automaton of size d, to obtain an automaton of size d′ that omputes the samefuntion.Using the Amitsur-Levitzki theorem, for eah d we �nd some d′ > d suh that the inlusion isstrit. This implies that the hierarhy is in�nite. It remains open whether it is strit at eah level.It is known that M(W, 1) ⊂ M(W, 2) ⊂ M(W, 3).Choie of Weight Domain. For eah d, M(N, d) ⊆ M(Q≥0, d). This is lear sine N is a sub-semi-ring of Q≥0.We give an example (R,S) ∈ M(Q≥0, 3)2 \ M(N)∗, that is, with a two-step termination proofof rational-weighted automata of size 3, but no natural-weighted termination proof of any size andnumber of steps.Proofs with one or many steps. Obviously M(W,d) ⊆ M(W,d)∗.There is an example (R, ∅) ∈ M(N, 2)2 \ M(N), that is, a system with a two-step proof using atwo-state automaton, but no one-step proof (for automata of any size) [HW06℄.Referenes[EWZ06℄ Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix interpretations for provingtermination of term rewriting. In Ulrih Furbah and Natarajan Shankar, editors, IJCAR, volume4130 of Leture Notes in Computer Siene, pages 574�588. Springer, 2006.[GHW07℄ Andreas Gebhardt, Dieter Hofbauer, and Johannes Waldmann. Matrix evolutions. In Workshopon Termination (WST07), 2007.[HW06℄ Dieter Hofbauer and Johannes Waldmann. Termination of string rewriting with matrix inter-pretations. In Frank Pfenning, editor, RTA, volume 4098 of Leture Notes in Computer Siene,pages 328�342. Springer, 2006.
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A Survey of Integer Weighted Finite AutomataVesa Halava, Tero Harju, Eero LehtonenDepartment of MathematisFI-20014 Turku, Finland
{vesa.halava, tero.harju, elleht}�utu.fiThe integer weighted automata, denoted by FA(Z), are losely related to 1-turn automata asonsidered espeially by Ibarra [3℄. In our model the ounter is replaed by a weight funtion ofthe transitions, and while doing so, the �nite automaton beomes independent of the ounter. Tobe preise, the weight funtion is alulated additively and the input is aepted if and only if theweight of its path is zero.In this survey, we onentrate on undeidability results onerning integer weighted automata.First we show that the universe problem for the FA(Z) is undeidable [1℄. This is done by givingan expliit 4-stated unimodal integer weighted automaton that aepts every word in A∗ if andonly if a given instane of Post Correspondene Problem has a solution.We also give a matrix representation [2℄ of integer weighted �nite automata via Laurent poly-nomials. This leads to an analogue of a fundamental result in the theory of rational series and alsogives an undeidability result for these matries.The main purpose of this survey is to present the basis and also some highlights of the theoryof integer weighted automata. We will mainly fous on original onsiderations made by the �rsttwo authors. Also, some open problems are disussed.Referenes1. V. Halava and T. Harju.Undeidability in Integer Weighted Finite Automata, Fundamenta Informatiae39 (1999), 189�200.2. V. Halava and T. Harju. Undeidability in Matries over Laurent Polynomials, Adv. in Appl. Math.33, Issue 4 (2004), 747�752.3. O. H. Ibarra. Restrited one-ounter mahines with undeidable universe problems, Math. SystemsTheory 13 (1979), 181�186.
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Statistial Language Models within the Algebra ofWeighted Rational LanguagesThomas Hanneforth1 and Kay-Mihael Würzner21University of Potsdam2Berlin-Brandenburg Aademy of SieneFinite State Mahines (FSMs) have been used in the �eld of statistial language modelingfor a very long time. The majority of existing approahes uses them merely as a onvenient datastruture, mostly disregarding the underlying algebra with its well-de�ned operations like union andintersetion. Instead of that, a bunh of speialized algorithms for the onstrution and appliationof statistial language models (LMs) are used (e.g. [1℄, [2℄).We think that this way of oneiving and using LMs is not desirable sine it ompromises themodularity of larger appliations built on FSMs. Alternatively, the algebra of weighted rationallanguages (WRLs) and transdutions (WRTs, f. [3℄) should su�e. As a ase study, we presentan alternative method for onstruting LMs (N -gram models, inluding disounting, bak-o�, andinterpolation as well as lass-based and disontinuous N -gram models) in a ompletely algebraiway. Besides the usual rational operations, we need in addition only simple trivially weighted�nite-state transduers depending on the order N and the alphabet Σ under onsideration. Thesetransduers map pre�xes and/or su�xes of N -gram strings to ε or other symbols.Creating an N -gram model onsists of ounting N -grams in a orpus, normalizing these ounts,handling sparseness by smoothing, and �nally applying an algorithm resulting in an weighted FSMaepting strings of arbitrary length. To give an impression how to handle all these steps withinthe algebra of weighted rational languages, we exemplify our approah fousing on the step oftransforming N -gram frequenies into onditional probabilities.The onditional probability of an N -gram is omputed by equation (1).
Pr(wi|w

i−1
i−N+1) =

C(wi−1
i−N+1wi)

∑

w

C(wi−1
i−N+1w)

(1)Given an WRL CN : ΣN → R+ mapping N -grams to their frequenies, this normalization isperformed in two steps: To represent the denominator in equation (1) we introdue an WRT
Ek

N : ΣN × ΣN → R+ whih maps all k-gram su�xes to eah other (what in e�et assigns eahweight to every symbol):
E

k
N (x, y) = (ΣN−k · (Σ ×Σ)k)(x, y) (2)Setting k = 1, the appliation E1
N [CN ] performs the summing over the unigram su�xes of all N -grams sharing the same N − 1-gram pre�x as demanded by equation (1)⋆. The seond step is thedivision of the orresponding N and N − 1-gram ounts. To model this arithmeti operation, onean take advantage of two properties of the real semiring (R = 〈R+,+, ·, 0, 1〉): 1) The abstratsemiring multipliation ⊗ is instantiated in R with the atual multipliation of real numbers. 2) Ris a division semiring ([4℄) that is, ∀a 6= 0 ∈ K, ∃b ∈ K suh that a⊗ b = 1. Given these propertiesand the fat that weighted intersetion ombines weights by ⊗ ([5℄), it is possible to representdivision by intersetion with multipliative inverses. We therefore introdue an operation alled

⊗-negation denoted by −1 whih replaes every weight with its multipliative inverse. It is nowpossible to de�ne the following WRL Pc
N : ΣN → R+ whih represents the onditional probabilitiesof the ounts in CN .

P
c
N (x) = CN ∩ (E1

N [CN ])−1(x) (3)
⋆ Note that the appliation T[L] is an abbreviation for the seond projetion of the omposition of ID(L)and T. 37



Our approah is implemented on the basis of weighted �nite-state mahines (WFSM) orrespondingto the given WRLs. This enables us to make use of the usual optimization proedures for WFSMs.Moreover, the harater of the given WRLs allows for representing the orresponding WFSMs ina virtual way permitting aess to states and transitions in onstant time and onsuming only aonstant amount of memory independent of the size of N and Σ. The ross-produt of Σ used in
Ek

N would otherwise need a quadrati number of transitions relative to the size of Σ.We will show that the omplexity of the omplete algebrai spei�ation � whih leads to aminimal LM, as long as the N -gram frequenies are represented as a minimal WFSM � is linear inthe size of the given training orpus.Referenes1. Giuseppe Riardi, Roberto Pieraini, and Enrio Bohieri. Stohasti Automata for LanguageModeling. Computer Speeh & Language, 10(3):265�293, 1996.2. David Llorens, Juan Miguel Vilar, and Franiso Casauberta. Finite State Language Models SmoothedUsing n-Grams. International Journal of Pattern Reognition and Arti�ial Intelligene, 16(3):275�289,2002.3. Fernando C.N. Pereira and Mihael D. Riley. Speeh Reognition by Composition of Weighted Fi-nite Automata. In Emmanuel Rohe and Yves Shabes, editors, Finite-State Language Proessing,volume 12 of Language, Speeh, and Communiation, hapter 15, pages 433�453. The MIT Press,Cambridge, MA, 1997.4. Jason Eisner. Simpler and More General Minimization for Weighted Finite-State Automata. In Pro-eedings of the 2003 Conferene of the North Amerian Chapter of the Assoiation for ComputationalLinguistis on Human Language Tehnology, volume 1, pages 64�71, Morristown, NJ, 2003. Assoiationfor Computational Linguistis.5. Mehryar Mohri, Fernando Pereira, and Mihael Riley. Weighted Automata in Text and Speeh Pro-essing. In William Wahlster, editor, ECAI 96. 12th European Conferene on Arti�ial Intelligene.John Wiley & Sons, Ltd., 1996.
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Relationships between FFA-reognizability andDFA-reognizability of Fuzzy LanguagesJelena Ignjatovi¢1, Miroslav �iri¢1, and Tatjana Petkovi¢21Faulty of Sienes and Mathematis, University of Ni²Vi²egradska 33, 18000 Ni², Serbiajejaign�yahoo.om, irim�bankerinter.net2NokiaJoensuunkatu 7, FIN-24100 Salo, Finlandtatjana.petkovi�nokia.omIn this talk we will present the results from [4, 5℄, onerning relationshipsbetween reognizability of fuzzy languages by fuzzy �nite automata (FFA-reognizability) andtheir reognizability by deterministi �nite automata (DFA-reognizability). Equivalene betweenFFA-reognizability and DFA-reognizability of fuzzy languages over a loally �nite omplete lat-tie was established by B¥lohlávek [1℄. A more general result was obtained by Li and Pedryz [6℄,who studied fuzzy automata over a lattie ordered monoid L , and proved that FFA-reognizabilityis equivalent to DFA-reognizability if and only if the semiring redut L ∗ of L (with respet tothe join and multipliation operations) is loally �nite. B¥lohlávek [1℄ and Li and Pedryz [6℄ gavea method for determinization of fuzzy automata, whih results in a �nite automaton if and only if
L

∗ is loally �nite. Another method, developed in [4℄ for fuzzy languages over a omplete residu-ated lattie L , an result in a �nite automaton even if L ∗ is not loally �nite, and always givesa smaller automaton than the method by B¥lohlávek and Li and Pedryz. Certain riterions for�niteness of the resulting deterministi automaton have been obtained in [4, 5℄, where it has beenshown that this automaton is a minimal deterministi automaton reognizing all fuzzy languageswhih an be reognized by the original fuzzy automaton.In [5℄ the authors studied DFA-reognizability of fuzzy languages with membership values in anarbitrary set having two distinguished elements 0 and 1, whih are needed to take risp languagesinto onsideration. DFA-reognizability of these fuzzy languages has been haraterized throughtheir syntati right ongruenes and syntati ongruenes, and it has been proved that for anyfuzzy language there exists a minimal deterministi automaton reognizing it, whih is unique up toan isomorphism. This automaton has been onstruted by means of derivatives of a fuzzy language,as well as by means of derivatives of ertain risp languages assoiated with a fuzzy language (kerneland ut languages), and an algorithm for minimization of a deterministi automaton whih reogni-zes a fuzzy language has been given. A similar algorithm, for deterministi automata reognizingfuzzy languages over a distributive lattie, has been reently given by Li and Pedryz [7℄.Reognizability of fuzzy languages by �nite monoids (FM-reognizability) has been reentlystudied by Bozapalidis and Lousou-Bozapalidou [2, 3℄, who have established ertain relationshipsbetween FM-reognizability and FFA-reognizability of fuzzy languages. In [5℄ the authors haveshown that FM-reognizability of fuzzy languages is equivalent to DFA-reognizability.Aknowledgment. Researh supported by Ministry of Siene, Republi of Serbia, Grant No.144011Referenes1. B¥lohlávek, R.: Determinism and fuzzy automata. Information Sienes 143, 205�209 (2002)2. Bozapalidis, S., Lousou-Bozapalidou, O.: On the reognizability of fuzzy languages I. Fuzzy Sets andSystems 157, 2394�2402 (2006)3. Bozapalidis, S., Lousou-Bozapalidou, O.: On the reognizability of fuzzy languages II. Fuzzy Sets andSystems 159, 107-113 (2008) 39



4. Ignjatovi¢, J., �iri¢, M., Bogdanovi¢, S.: Determinization of fuzzy automata with membership valuesin omplete residuated latties. Information Sienes 178, 164�180 (2008)5. Ignjatovi¢, J., �iri¢, M., Bogdanovi¢, S., Petkovi¢, T.: Myhill-Nerode type theory for fuzzy languagesand automata. submitted for publiation6. Li, Y.M., Pedryz, W.: Fuzzy �nite automata and fuzzy regular expressions with membership valuesin lattie ordered monoids. Fuzzy Sets and Systems 156, 68�92 (2005)7. Li, Y.M., Pedryz, W.: Minimization of lattie �nite automata and its appliation to the deompositionof lattie languages. Fuzzy Sets and Systems 158, 1423�1436 (2007)
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Deiding Unambiguity and Sequentiality from aPolynomially Ambiguous min-plus Automaton⋆Daniel Kirsten1,† and Sylvain Lombardy21University Leipzig, Institute for Computer Siene04009 Leipzig, Germanywww.informatik.uni-leipzig.de/∼kirsten/2Institut Gaspard Monge, Université de Marne-la-Vallée77454 Marne-la-Vallée Cedex 2, Franeigm.univ-mlv.fr/∼lombardy/The sequentiality/unambiguity problem is one of the most intriguing open problems in thetheory of min-plus automata: deide (onstrutively) whether some given min-plus automatonadmits a sequential/unambiguous equivalent. This problem is wide open despite it was studied byseveral researhers, e.g. [1, 2, 4, 5℄.In 2004, it was shown by Klimann, Lombardy, Mairesse, and Prieur that the sequential-ity/unambiguity problem is deidable for �nitely ambiguous min-plus automata [2℄.The lass of polynomially ambiguous min-plus automata lies stritly between the lasses of�nitely ambiguous and arbitrary min-plus automata.In the talk, we generalize the result from [2℄ by showing that the sequentiality/unambiguityproblem is deidable for polynomially ambiguous min-plus automata. For this, we have to handleseveral problems:1. The equivalene problem for polynomially ambiguous min-plus automata is undeidable [3℄.Thus, we annot deide state equivalene in our proofs.2. The key onstrution in [2℄ relies on a deomposition of the given �nitely ambiguous min-plusautomaton into a �nite family of unambiguous min-plus automata. Suh a deomposition isnot possible for polynomially ambiguous min-plus automata. We overome this problem bydeveloping a theory of so-alled metatransitions.3. The proof in [2℄ relies on pumping tehniques. We an show by an example that pumpingtehniques are not su�ient to deide the sequentiality/unambiguity problem for �nitely am-biguous min-plus automata. We develop nested pumping tehniques whih lead us to interestingBurnside type problems for matries over the tropial semiring.Referenes1. I. Klimann, S. Lombardy, J. Mairesse, and C. Prieur. Deiding the sequentiality of a �nitely ambiguousmax-plus automaton. In Z. Ésik and Z. Fülöp, editors, DLT'03 Proeedings, volume 2710 of LetureNotes in Computer Siene, pages 373�385. Springer-Verlag, Berlin, 2003.2. I. Klimann, S. Lombardy, J. Mairesse, and C. Prieur. Deiding unambiguity and sequentiality from a�nitely ambiguous max-plus automaton. Theoretial Computer Siene, 327(3):349�373, 2004.3. D. Krob. The equality problem for rational series with multipliities in the tropial semiring is unde-idable. International Journal of Algebra and Computation, 4(3):405�425, 1994.4. S. Lombardy and J. Sakarovith. Sequential? Theoretial Computer Siene, 356:224�244, 2006.5. M. Mohri. Finite-state transduers in language and speeh proessing. Computational Linguistis,23:269�311, 1997.
⋆ A full paper is available on the authors homepages.
† The main results were ahieved during a three months stay of the author at the Institute Gaspard-Mongeat the Université Marne-la-Vallée whih was funded by the CNRS.41



Max/Plus Tree Automatafor Termination of Term RewritingAdam Koprowski1 and Johannes Waldmann21TU Eindhoven, The Netherlandshttp://www.win.tue.nl/∼akoprows/2HTWK Leipzig, Germanyhttp://www.imn.htwk-leipzig.de/∼waldmann/Term rewriting is a model of omputation. It serves as the basis for funtional programming andfor formal (algebrai) spei�ation. Termination of rewriting therefore is an interesting property.It is undeidable in general, but there are several semi-algorithms, used by automated terminationprovers.One method of proving termination is interpretation into a well-founded algebra. While polyno-mial interpretations (over the naturals) are well-known, a reent development is the matrix method[HW06,EWZ06℄ that uses linear interpretations over vetors of naturals, equivalently, N-weightedautomata. In [Wal06,Wal07℄ we extended this method (for string rewriting) to arti automata, i.e.on the max/plus semi-ring on {−∞}∪N. Its implementation in the termination prover Mathbox[Wal04℄ ontributed to this prover winning the string rewriting division of the 2007 terminationompetition [Mar04℄.The �rst ontribution of the present work is a generalization of arti termination to termrewriting. We use interpretations given by weighted tree automata. We restrit to the speial aseof automata where eah transition funtion is of the form (x1, . . . , xn) 7→M0+M1 ·x1+. . .+Mn ·xn.Here, xi are (olumn) vetor variables,M0 is a vetor and M1, . . . are square matries. Operationsare understood in the semi-ring.Sine the max operation is not stritly monotoni in single arguments, we do not obtain mono-tone interpretations, but only weakly monotone interpretations. These annot prove termination,but only top termination, where rewriting steps are only applied at the root of terms. This is arestrition but it �ts with the framework of the dependeny pairs method [AG00℄ that transformsa termination problem to a top termination problem.The seond ontribution is a generalization from arti naturals to arti integers, i.e. {−∞}∪Z.Arti integers allow e.g. to interpret funtion symbols by the predeessor funtion, and thismathes the �intrinsi� semantis of some termination problems. There is previous work on poly-nomial interpretations with negative oe�ients [HM04℄. It uses ad-ho max operations in severalplaes. The semi-ring of arti integers provides a general framework (under the restrition thatthe polynomials are linear).The third ontribution is that all de�nitions, theorems and proofs have been formalized with theproof assistant Coq [BC04℄. This extends previous work [KZ08℄ and will beome part of the CoLoRprojet [BDCG+06℄ that gathers formalizations of termination tehniques and employs them toertify termination proofs found automatially. In 2007, the erti�ed ategory of the terminationompetition was won by the termination prover TPA [Kop06℄ that uses CoLoR.A method to searh for arti interpretations is implemented for the termination prover Math-box. It works by transformation to a boolean satis�ability problem, and applying a state-of-the-artSAT solver. For several termination problems that ould not be solved in last year's terminationompetition it �nds proofs via arti tree automata and the new CoLoR version erti�es them.Referenes[AG00℄ Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependeny pairs. Theor.Comput. Si., 236(1-2):133�178, 2000. 42



[BC04℄ Yves Bertot and Pierre Casteran. Interative Theorem Proving and Program Development.Springer, 2004.[BDCG+06℄ Frédéri Blanqui, William Delobel, Solange Coupet-Grimal, Sébastien Hinderer, and AdamKoprowski. CoLoR, a Coq library on rewriting and termination. In Eighth InternationalWorkshop on Termination (WST 06'), 2006. http://olor.loria.fr.[EWZ06℄ Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix interpretations for provingtermination of term rewriting. In Ulrih Furbah and Natarajan Shankar, editors, IJCAR,volume 4130 of Leture Notes in Computer Siene, pages 574�588. Springer, 2006.[HM04℄ Nao Hirokawa and Aart Middeldorp. Polynomial interpretations with negative oe�ients.In Bruno Buhberger and John A. Campbell, editors, AISC, volume 3249 of Leture Notes inComputer Siene, pages 185�198. Springer, 2004.[HW06℄ Dieter Hofbauer and Johannes Waldmann. Termination of string rewriting with matrix in-terpretations. In Frank Pfenning, editor, RTA, volume 4098 of Leture Notes in ComputerSiene, pages 328�342. Springer, 2006.[Kop06℄ Adam Koprowski. TPA: Termination proved automatially. In Frank Pfenning, editor, TermRewriting and Appliations, 17th International Conferene, RTA 2006, Seattle, WA, USA,August 12-14, 2006, Proeedings, volume 4098 of Leture Notes in Computer Siene, pages257�266. Springer, 2006. urrent information at http://www.win.tue.nl/tpa/.[KZ08℄ Adam Koprowski and Hans Zantema. Certi�ation of proving termination of term rewritingby matrix interpretations. In Viliam Ge�ert, Juhani Karhumäki, Alberto Bertoni, Bart Pre-neel, Pavol Návrat, and Mária Bieliková, editors, SOFSEM, volume 4910 of Leture Notes inComputer Siene, pages 328�339. Springer, 2008.[Mar04℄ Claude Marhe. Termination ompetition. http://www.lri.fr/ marhe/termination-ompetition/, 2004.[Wal04℄ Johannes Waldmann. Mathbox: A tool for math-bounded string rewriting. In Vinentvan Oostrom, editor, Pro. 15th Int. Conf. Rewriting Tehniques and Appliations RTA-98,number 3091 in Leture Notes in Comput. Si., pages 85�94, 2004. urrent information athttp://dfa.imn.htwk-leipzig.de/mathbox/.[Wal06℄ Johannes Waldmann. Weighted automata for termination of string rewriting. In Workshopon Weighted Automata Theory and Appliations (WATA06), 2006.[Wal07℄ Johannes Waldmann. Arti termination. In Workshop on Termination (WST07), 2007.http://dfa.imn.htwk-leipzig.de/mathbox/methods/arti.pdf.
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From unweighted to weighted traes� alternative proofs �Dietrih KuskeInstitut für InformatikUniversität LeipzigA large body of theoretial omputer siene deals with properties of languages as sets of �nitewords. These words an be understood as the sequene of events performed by some system. Thismodelling works �ne for sequential systems beause of the linear nature of words. Mazurkiewiz,in 1977, proposed a generalization of words nowadays alled Mazurkiewiz traes that allows toalso model some onurreny. Sine its introdution, muh work has been devoted to the transferof results on word languages to trae languages (f. the handbook �The book of Traes�). Onesuh result is Kleene's theorem equating the reognizable and the rational languages. Ohma«skisueeded in transfering this result to trae languages showing that the reognizable trae languagesare preisely the -rational ones.For sequential systems, it is not just interesting to ask whether a partiular word is generated,but also to know the number of di�erent ways it an be generated. This question developed intothe theory of weighted automata and formal power series. A fundamental result is Shützenberger'stheorem from 1961, equating the behaviors of weighted automata with the set of rational formalpower series.These two distint generalizations of Kleene's theorem were re-joint by Droste & Gastin in1999 who investigated weighted trae automata and formal power series over partially ommutingvariables.The theorems by Kleene, by Shützenberger, by Ohma«ski, and by Droste & Gastin show thatall rational languages, formal power series, trae languages, or formal power series over partiallyommuting variables are reognizable. All the proofs follow the line of Kleene's proof (namelyshowing the losure of reognizable objets with respet to all rational operations) albeit withnon-trivial additions.In this talk, we present an alternative proof of Droste & Gastin's haraterisation of the behaviorof weighted trae automata. The main novelty lies in the fat that we derive their result as aorollary to Ohma«ski's theorem. In other words, we derive a result on weighted trae automatafrom a theorem on unweighted trae automata.
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Weighted tree automata with disountingEleni Mandrali and George RahonisDepartment of Mathematis, Aristotle University of Thessaloniki54124 Thessaloniki, Greee
{elemandr,grahonis}�math.auth.grWe introdue the model of weighted top-down tree automata (WTTA for short) with disounting.These automata are usual weighted top-down tree automata, where the disounted weight of a runon an input tree, is omputed by disounting the weight of every node aording to its distane fromthe root of the tree. More preisely, for a ranked alphabet Σ and a semiring K, a Φ-disountingover Σ and K is a family Φ = (Φσ)σ∈Σ of endomorphisms of K indexed by the alphabet Σ. Givena WTTA M over Σ and K, a tree t ∈ TΣ, and a run rt of M over t, the weight of every node

w ∈ dom(rt) is disounted by Φ aording to the path from the root of t to w. In this way, the nodesourring at the same level of the tree get a weight disounted by the same grade. We show thatthe lass KΦ−rec 〈〈TΣ〉〉 of formal power tree series reognized by WTTA over a ranked alphabet
Σ and a ommutative semiring K with a Φ-disounting, oinides with the lass of Φ-rational treeseries over Σ and K, i.e. a Kleene theorem. Here, for our Φ-rational tree operations, it su�esto inorporate the Φ-disounting in top-onatenation and in α-onatenation. By onsidering theidentity disounting, we obtain as a speial ase the Kleene theorem of Droste, Peh and Vogler[2℄. Furthermore, by applying our result to monadi ranked alphabets (i.e. ranked alphabets withsymbols of rank 0 and 1), we get the Kleene-Shützenberger theorem of Droste and Kuske [1℄ forskew word series.Then, we introdue a weighted MSO logi with disounting for �nite trees. In fat, we usethe logis of Droste and Vogler [4℄ and we inorporate the disounting only in the semantis ofthe �rst order universal quanti�ations. For this logi, we prove the expressive equivalene of Φ-reognizable tree series with two fragments of Φ-de�nable sentenes. The �rst one alled restritedis semantially determined. The latter alled almost existential is syntatially de�ned, and for theequivalene result we require that the additive monoid of the underlying semiring is loally �nite.For our onstrutions it is onvenient to work with weighted bottom-up tree automata withdisounting. Trivially the lasses of the behaviors of the two models oinide.In the seond part of the paper, we onsider weighted Muller tree automata with disountingover the max-plus Rmax and the min-plus Rmin semirings. By using the disounting parameters, weget rid of the ompleteness axioms of the underlying semirings required in [5℄. Then, we enrih ourweighted MSO logis (for �nite trees) with the formulas x = y and ∀X �ϕ, but we still disount thesemantis of the weighted formulas only in the �rst order universal quanti�ations. We show thatthe lass of disounted Muller reognizable tree series oinides with two fragments of weightedsentenes of our logis. The restrited whih is de�ned semantially and the inomplete universalwhih is de�ned syntatially. If we restrit ourselves to monadi alphabets, then we an drop theseond order universal quanti�ers from our logi. Therefore, we obtain as a speial ase a reentresult of Droste and Rahonis [3℄ onneting disounted ω-reognizable word series with in�nitaryseries de�nable by disounted MSO-sentenes. This fat highlights the robustness of the theory ofdisounted weighted logis for in�nite words and trees.Referenes1. M. Droste, D. Kuske, Skew and in�nitary formal power series, Theoret. Comput. Si. 366(2006) 199-227.2. M. Droste, C. Peh, H. Vogler, A Kleene theorem for weighted tree automata, Theory of ComputingSystems 38(2005) 1-38.3. M. Droste, G. Rahonis, Weighted automata and weighted logis with disounting, in: Proeedings ofCIAA 2007, LNCS 4783(2007) 73-84 45
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Weighted Logis for Nested Words andAlgebrai Formal Power SeriesChristian MathissenInstitut für Informatik, Universität LeipzigD-04009 Leipzig, Germanymathissen�informatik.uni-leipzig.deModel heking of �nite state systems has beome an established method for automati hardwareand software veri�ation and led to numerous veri�ation programs used in industrial appliation.In order to verify reursive programs it is neessary to model them as pushdown systems rather than�nite automata. This has motivated Alur and Madhusudan [3, 4℄ to de�ne the lasses of nestedword languages and visibly pushdown languages, whih is a proper sublass of the ontext-freelanguages and exeeds the regular languages. These lasses gained huge interest and set a startingpoint for a new researh �eld, see e.g. [1, 2, 5, 6℄ among many others.The goal of this ontribution will be: 1. to introdue a quantitative automaton model and aquantitative logi for nested words being equally expressive, 2. to establish a onnetion betweennested words and series-parallel-biposets whih have been studied by Ésik & Németh [9℄ andHashiguhi et. al. (e.g. [10℄) and 3. to give a haraterization algebrai formal power series bymeans of weighted logi.On order to be able to model quantitative properties of systems, extensions of existing modelsto quantitative models as for example weighted automata have been investigated. We introdueand investigate weighted nested word automata whih we propose as a quantitative model forsequential programs with reursive proedure alls. Due to the fat that we de�ne them overarbitrary semirings they are very �exible and an e.g. model probabilisti or stohasti systems.As the �rst main result, we haraterize their expressiveness using weighted logi as introdued byDroste and Gastin [8℄, generalizing a result of Alur and Madhusudan.To show our result we establish a new onnetion between so-alled series-parallel-biposets andnested words. The lass of sp-biposets forms the free bisemigroup whih has been investigated byHashiguhi et. al. (e.g. [10℄) and a language theory for series-parallel-biposets has been developedby Ésik and Németh [9℄. We antiipate that the onnetion between nested words and sp-biposetsan be utilized to obtain further results.Using projetions of nested word series and applying the above mentioned result we obtain theseond main result, a haraterization of algebrai formal power series in terms of weighted logigeneralizing a result of Lautemann, Shwentik and Thérien [13℄ for ontext-free languages.Referenes1. R. Alur, S. Chaudhuri, and P. Madhusudan. A �xpoint alulus for loal and global program �ows.In Pro. of the 33rd ACM POPL, Charleston, pages 153�165. ACM, 2006.2. R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congruenes for visibly pushdown lan-guages. In Pro. of the 32nd ICALP, Lisbon, volume 3580 of Leture Notes in Computer Siene, pages1102�1114, 2005.3. R. Alur and P. Madhusudan. Visibly pushdown languages. In Pro. of the 36th STOC, Chiago, pages202�211. ACM, 2004.4. R. Alur and P. Madhusudan. Adding nesting struture to words. In Pro. of the 10th DLT, SantaBarbara, volume 4036 of Leture Notes in Computer Siene, pages 1�13, 2006.5. M. Arenas, P. Bareló, and L. Libkin. Regular languages of nested words: Fixed points, automata, andsynhronization. In Pro. of the 34th ICALP, Wrolaw, volume 4596 of Leture Notes in ComputerSiene, pages 888�900, 2007.6. V. Bárány, C. Löding, and O. Serre. Regularity problems for visibly pushdown languages. In Pro. ofthe 23rd STACS, Marseille, volume 3884 of Leture Notes in Computer Siene, pages 420�431, 2006.47
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On the expressive power of a weighted µ-alulusIngmar MeinekeInstitut für Informatik, Universität Leipzig04009 Leipzig, Germanymeineke�informatik.uni-leipzig.deThe µ-alulus (f. [1, 6℄) is a well-established and important notion in omputer siene. It om-bines advantages both of logi (a well-strutured notation) and of automata (algorithmi problemsare solved by omputing �xed points). Di�erent temporal logis are a fragment of the µ-alulus.In reent years, multi-valued and weighted logis attrated more and more interest. A weightedmonadi seond-order logi over �nite words was introdued [3℄. Here, weights from an arbitraryommutative semiring are appended. A fragment of this logi turned out as semantially equivalentto the behaviors of weighted �nite automata. But for the desription of temporal properties theuse of modal operators seems more reasonable. Several papers (f. [5, 2, 4, 7℄) deal with suh multi-valued temporal logis and attak the model heking problem in a multi-valued setting. Thevalues are taken from ertain �nite distributive latties L (De Morgan algebras). Then multi-valuedKripke strutures are onsidered, i.e., atomi propositions in the states and/or the transitions of thestruture take values in L. For several temporal logis and the µ-alulus over these multi-valuedKripke strutures the model heking problem was solved (either by a redution to the lassialase or by attaking it diretly).Here, we turn our attention to the expressive power. We de�ne a weighted µ-alulus on �niteand in�nite words and show the oinidene of a onjuntion-free fragment with the lass of ω-rational formal power series. Hereby, the weights are taken from a distributive omplete lattie.Moreover, we disuss for whih other semirings the result may arry over.Referenes1. A. Arnold and D. Niwi«ski. Rudiments of µ-alulus, volume 146 of Studies in Logi and the Founda-tions of Mathematis. North-Holland, 2001.2. G. Bruns and P. Godefroid. Model heking with multi-valued logis. In Proeedings of ICALP 2004(31st International Colloquium on Automata, Languages and Programming), volume 3142 of Let.Notes in Comp. S., pages 281�293. Springer, 2004.3. M. Droste and P. Gastin. Weighted automata and weighted logis. Theoretial Computer Siene,380:69�86, 2007.4. G. E. Fainekos. An introdution to multi-valued model heking. Tehnial Report MS-CIS-05-16,Dept. of CIS, University of Pennsylvania, September 2005.5. A. Gur�nkel and M. Chehik. Multi-valued model heking via lassial model heking. In Proeedingsof CONCUR 2003, volume 2761, pages 266�280. Springer, 2003.6. D. Kozen. Results on the propositional mu-alulus. Theoretial Computer Siene, 27:333�354, 1983.7. O. Kupferman and Y. Lustig. Lattie automata. In Proeedings of Veri�ation, Model Cheking, andAbstrat Interpretation, 8th International Conferene, VMCAI 2007, Nie, Frane, volume 4349 ofLet. Notes in Comp. S., pages 199�213. Springer, 2007.
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A Kleene-Shützenberger Theoremfor Weighted Timed AutomataKarin Quaas and Manfred DrosteInstitut für InformatikUniversität Leipzig, 04109 Germany
{quaas,droste}�informatik.uni-leipzig.deDuring the last years, weighted timed automata (wta) have reeived muh interest in the real-time ommunity. Weighted timed automata are an extension of timed automata [2℄ and allow toassign weights (osts) to both loations and edges. This model has been introdued independentlyby Alur et al. [3℄ and Behrmann et al. [4℄. It allows the modelling of ontinuous onsumption ofresoures, and thus, enables to represent e.g. sheduling and planning problems. Consequently,there has been muh researh on problems as optimal reahability and model heking [8℄, [10℄, [1℄.However, there has been no algebrai haraterization of the behaviour of wta so far. We attemptto �ll this gap by providing a Kleene-Shützenberger theorem for wta [14℄. We apply the theoryof weighted �nite automata [6℄, [16℄, [15℄, and de�ne wta over a semiring, resulting in a modelthat subsumes previous de�nitions in the literature, e.g. [3℄, where osts for reahing a loation areomputed by taking the in�mum of the running weights of all runs, or [9℄, a multi-pried variant ofa wta. For giving a Kleene-Shützenberger theorem, we ombine the approah of Shützenberger[17℄ as well as a reent approah of a Kleene-type theorem for (unweighted) timed automata byBouyer and Petit [11℄. Our main result also implies Kleene-type theorems for several sublassesof wta, i.e., weighted �nite automata, timed automata, timed automata with stopwath observers[12℄.Currently, we are investigating whether there is a Bühi-type theorem for wta, i.e., are wtaexpressively equivalent to some weighted timed version of monadi seond-oder logi. For this weare trying to ombine methods of Wilke [18℄, Droste and Gastin [13℄ and Bouyer [7℄.Referenes1. R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reahability in weighted timed games. In J. Díaz,J. Karhumäki, A. Lepistö, and D. Sannella, editors, ICALP, volume 3142 of LNCS, pages 122�133.Springer, 2004.2. R. Alur and D. L. Dill. A theory of timed automata. Theoretial Computer Siene, 126(2):183�235,1994.3. R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata. In Benedettoand Sangiovanni-Vinentelli [5℄, pages 49�62.4. G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn, and F. Vaandrager. Minimum-ost reahability for pried timed automata. In Benedetto and Sangiovanni-Vinentelli [5℄, pages 147�161.5. M. D. Di Benedetto and A. Sangiovanni-Vinentelli, editors. Hybrid Systems: Computation and Con-trol, 4th International Workshop, HSCC 2001, Rome, Italy, Marh 2001, Proeedings, volume 2034 ofLNCS. Springer, 2001.6. J. Berstel and C. Reutenauer. Rational Series and their Languages. Springer-Verlag New York, In.,New York, NY, USA, 1988.7. P. Bouyer. A logial haraterization of data languages. Information Proessing Letters, 84(2):75�85,Otober 2002.8. P. Bouyer, T. Brihaye, V. Bruyère, and J.-F. Raskin. On the optimal reahability problem on weightedtimed automata. Formal Methods in System Design, 31(2):135�175, Otober 2007.9. P. Bouyer, E. Brinksma, and K. G. Larsen. Optimal in�nite sheduling for multi-pried timed au-tomata. Formal Methods in System Design, 2007. To appear.10. P. Bouyer, K. G. Larsen, and N. Markey. Model-heking one-lok pried timed automata. In H. Seidl,editor, FoSSaCS, volume 4423 of LNCS, pages 108�122. Springer, 2007.50
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Reognizability of Iterative Piture LanguagesSibylle Shwarz and Renate WinterInstitut für InformatikMartin-Luther-Universität Halle-Wittenberg, Germany[shwarzs,winter℄�informatik.uni-halle.dePiture languages generated by an iterative proess our in image ompression [11℄ and thereation of fratal pitures [6℄.Every letter (m,n) in the alphabet Ak = {0, . . . , k− 1}2 is interpreted as a position in a k× k-square and every word w ∈ A∗
k as position

Pos(w) =





|w|−1
∑

i=0

π1(wi)k
|w|−i−1,

|w|−1
∑

i=0

π2(wi)k
|w|−i−1



in a square of side k|w| where |w| is the length of the word |w|.For a semiring W , we will onsider pitures with "olors" in W , i.e. funtions p : {0, . . . ,m} ×
{0, . . . , n} → W . Then every W -valued word language L : A∗

k → W (also known as formal powerseries [1℄) de�nes a piture language
picture(L) = {pi : {0, . . . , ki − 1}2 →W | i ∈ N}where for every i ∈ N and every (m,n) ∈ {0, . . . , ki − 1}2

pi(m,n) = L
(

Pos
−1(m,n)

)

,i.e. pi(m,n) is the value in L of the word addressing position (m,n). Piture languages picture(L)that are de�ned by a word language L we all iterative.A W -valued word language L : A∗
k → W is reognizable if there is a W -weighted automaton(WFA) A suh that L is the behavior of A. If the semiring W is loally �nite (i.e. every �nitelygenerated subsemiring of W is �nite) then for every W -reognizable word language L : A2

k → W ,all pitures in picture(L) have olors from a �nite subset of W .Reognizability of piture languages over a �nite set of olors is de�ned by tiling systems [5℄and oinides with reognizability of piture languages by several other omputational devies(nondeterministi 4-way-automata, on-line tessellation automata) and de�nability in existentialmonadi seond order logi.Our main result is the following theorem:Theorem 1. For every loally �nite semiring W and every W -reognizable word language L :
A2

k →W , the piture language picture(L) is reognizable.This is proven by a onnetion to two-dimensional Lindenmayer systems [8℄, for whih reogniz-ability of the generated piture languages was shown in [9℄.Using a result in [7℄, we present a non-reognizable word language L suh that the piturelanguage picture(L) is reognizable. Hene the reognizability of picture(L) does not imply thereognizability of the word language L.The RGB model [3℄ is a standard olor format for digital images. Every olor is representedby a triple (r, g, b) (intensities of olors red, green, blue). The set of all olors in the RGB modelforms a loally �nite MV-algebra [2℄ with operations de�ned in [10℄. Hene by [4℄ this algebra hassemiring a redut (with the operations of pointwise maximum and trunated addition) that anserve as weight semiring for weighted automata. By our theorem, the set of all pitures generatedby a WFA-enoding [11℄ of an RGB image is a reognizable piture language.52
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Deomposition of Weighted Multioperator Tree AutomataTorsten Stüber1,⋆, Heiko Vogler1, Zoltán Fülöp21Department of Computer Siene, Tehnishe Universität DresdenD-01062 Dresden, Germany
{stueber,vogler}�ts.inf.tu-dresden.de2Department of Foundations of Computer Siene, University of SzegedÁrpád tér 2., H-6720 Szeged, Hungaryfulop�inf.u-szeged.huWeighted multioperator tree automata (for short: wmta) were introdued in [16℄; they are �nite-state bottom-up weighted tree automata in whih the transition weights are �nite sums of poly-nomials over variables, operations, and onstants. The operations are taken from a multiopera-tor monoid (for short: M-monoid) [15, 16℄, whih is an algebrai struture (A,+, 0, Ω) suh that

(A,+, 0) is a ommutative monoid and (A,Ω) is an Ω-algebra. If the operations in Ω distributeover + and + is idempotent, then an M-monoid is alled distributive Ω-magma in [4℄.Here we onsider a simpli�ed version of wmta (heneforth also alled wmta) in whih thetransition weights are operations taken from Ω (rather than �nite sums of polynomials over Ω).More preisely, given a wmta M , the weight of the transition at some k-ary input symbol σ withsome state behaviour (q1 · · · qk, q) is a k-ary operation ω ∈ Ω; let us denote this operation by
µk(σ)q1···qk,q. Then, for every run r of M on some input tree t ∈ TΣ and every position w of t, theweight of r on t at w, denoted by [[r]]M,t(w) ∈ A, is obtained by applying the operation µk(σ)q1···qk,qto the k elements [[r]]M,t(w.1), . . . , [[r]]M,t(w.k) ∈ A where σ is the label of t at w and (q1 · · · qk, q)is the state behaviour at w presribed by r. All in all, M reognizes the tree series [[M ]] ∈ A〈〈TΣ〉〉de�ned for every t ∈ TΣ suh that ([[M ]], t) is the sum of the values [[r]]M,t(ε) taken over all runs ron t. We denote the lass of all wmta reognizable tree series over A by BOT (A).Wmta have been investigated in [18, 20℄ where it was shown that they an easily simulateweighted tree automata over semirings [1, 3, 14, 8, 5℄ and tree series transduers over semirings [17,7, 11, 9, 19, 21℄ (for surveys on weighted tree automata and tree series transduers f. [8, 12℄). In[10℄ it was proved that the wmta reognizable tree series over some M-monoid A are exatly therational tree series over A.In this paper we prove three main results. The �rst main result is the following haraterizationof BOT (A):

BOT (A) = REL;FTA;HOM(A)whereREL and FTA are the lasses of relabeling tree transformations and fta tree transformations,respetively (as de�ned in [6℄); an fta tree transformation is a partial identity on a reognizable treelanguage; HOM(A) is the lass of all tree series whih are reognizable by homomorphism wmtaover A, where a homomorphism wmta is a wmta with exatly one state whih is also �nal; thesemiolon in the right hand side expression denotes the usual omposition of relations. This resultgeneralizes the deomposition of generalized sequential mahine mappings [22℄ (also f. Theorem 4.1of [2℄) and of bottom-up tree transduers (f. Theorem 3.5 of [6℄).The seond main result of this paper is derived from the �rst one. It shows the followingharaterization of the lass p-BOT (S) of tree series transformations omputed by polynomialbottom-up tree series transduers (for short: polynomial bottom-up tst) over some semiring S:
p-BOT (S) = REL;FTA;HOM(S)where HOM(S) is the lass of tree series transformations omputed by bottom-up homomorphismtst; a tree series transformation over S is a mapping ϕ : TΣ → S〈〈T∆〉〉. Polynomial bottom-uptst were investigated in, e.g., [7, 21, 12℄. We note that a similar haraterization has been proved

⋆ The work of this author was partially supported by Deutshe Forshungsgemeinshaft, projet DFG VO1011/4-1. 54



in Theorem 5.7 of [7℄: p-BOT (S) = QREL(S); b-HOM(S), where QREL(S) and b-HOM(S)denote the lasses of tree series transformations omputed by bottom-up �nite state relabeling tstand by Boolean bottom-up homomomorphism tst, respetively. The di�erene between these twoharaterizations is the fat that in REL;FTA;HOM(S) the lasses REL and FTA ontain treetransformations, i.e., mappings of the type TΣ → P(T∆), and the weights only our in the thirdlass (viz. HOM(S)); in ontrast to this, in QREL(S); b-HOM(S) the semiring values are solelyomputed by QREL(S) and the Boolean-valued bottom-up homomomorphism tst only produesthe values 0 or 1. This organization of weights in QREL(S); b-HOM(S) fored the ombinationof the relabeling and the state heking whih were originally separated. Also we note that, forthe Boolean semiring, our seond main result is exatly the haraterization of BOT proved inTheorem 3.5 of [6℄.The third main result of our paper is also derived from the �rst one, and it shows a harateri-zation of the lass Rec(Σ,S) of tree series whih are reognizable by weighted tree automata oversome semiring S:
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