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Preface

This report contains the programme and the abstracts of lectures delivered at the workshop
“Weighted Automata — Theory and Applications” which took place at Technische Universitét
Dresden, May 13-16, 2008. This workshop covered all aspects of weighted automata, ranging from
the theory of formal power series to applications of tree automata, natural language processing,
and multi-valued logics. The workshop was attended by 43 participants from 12 countries.

Two tutorials were given by

7. Esik (Szeged, Hungary and Tarragona, Spain)
K. Knight (Los Angeles, USA)

In addition, seven survey lectures were presented by

F. Drewes (Umeé, Sweden) S. Gaubert (Rocquencourt, France)
B. Gerla (Varese, Italy) W. Kuich (Vienna, Austria)
A. Maletti (Berkeley, USA) W. Martens (Dortmund, Germany)

G. Rahonis (Thessaloniki, Greece)

Furthermore, 17 talks were selected as technical contributions.
The workshop was organized jointly by the Chair for Automata and Formal Languages of Leipzig
University and the Chair for Foundations of Programming of Technische Universitit Dresden.

For further financial support we would like to thank the activity “Gesellschaft von Freunden und
Forderern der TU Dresden” and the “International Center for Computational Logic”.

Call for Papers
The journal Acta Cybernetica has agreed to publish a special issue on this topic. Submissions re-
lated to this topic could be either survey articles or research papers and will be refereed as usual.

Participation in the above workshop is encouraged, but is not a prerequisite for a submission.

Authors are asked to submit their contribution preferably in PostScript or PDF to both of the
editors of the special issue. Please send your files to

droste@informatik.uni-leipzig.de and vogler@inf.tu-dresden.de .
Deadline for submissions is July 11, 2008. We intend to ensure a quick refereeing process. Authors

of published papers will be provided with 50 reprints free of charge.

Manfred Droste and Heiko Vogler
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Scientific Programme






Tuesday, May 13, 2008

08:30-09:00 REGISTRATION
09:00-10:30 K. Knight TUTORIAL
An overview of weighted automata in natural language processing (I)
10:30-11:00 BREAK
11:00-12:00 W. Kuich SURVEY LECTURE
Why we need semirings in automata theory
12:00-13:30 LuNcH
13:30-14:30 F. Drewes SURVEY LECTURE
Learning: from string languages to tree series
14:35-15:00  F. Denis, A. Habrard, R. Gilleron, TECHNICAL CONTRIBUTION
M. Tommasi, E. Gilbert
On probability distributions for trees: representations, inference and learning
15:00-15:30 BREAK
15:30-15:55 A. Eckl TECHNICAL CONTRIBUTION
Prediction of subalphabets and ranking in DAWG’s for natural languages
15:55-16:20 T. Hanneforth, K.-M. Wiirzner TECHNICAL CONTRIBUTION
Statistical language models within the algebra of weighted rational languages
16:20-16:45 BREAK
16:45-17:10 K. Quaas, M. Droste TECHNICAL CONTRIBUTION
A Kleene-Schiitzenberger theorem for weighted timed automata
17:10-17:35 D. Kirsten, S. Lombardy TECHNICAL CONTRIBUTION

Deciding unambiguity and sequentiality from a polynomially ambiguous
min-plus automaton



Wednesday, May 14, 2008

08:30-09:00 REGISTRATION

09:00-10:30 K. Knight TUTORIAL
An overview of weighted automata in natural language processing (II)

10:30-11:00 BREAK

11:00-12:00 'W. Martens SURVEY LECTURE
XML research for formal language theorists

12:00-13:30 LuNcH

13:30-14:30  A. Maletti SURVEY LECTURE
Minimization of weighted automata

14:35-15:00 E. Mandrali, G. Rahonis TECHNICAL CONTRIBUTION
Weighted tree automata with discounting

15:00-15:30 BREAK

15:30-15:55  Z. Fiilop, M. Steinby TECHNICAL CONTRIBUTION
Varieties of recognizable tree series over fields

15:55-16:20 Z. Fiilop, L. Muzamel TECHNICAL CONTRIBUTION
Weighted tree-walking automata

16:20-16:45 BREAK

16:45-17:10 C. Mathissen TECHNICAL CONTRIBUTION
Weighted logics for nested words and algebraic formal power series

17:10-17:35 T. Stiber, H. Vogler, Z. Filop TECHNICAL CONTRIBUTION

Decomposition of weighted multioperator tree automata



Thursday, May 15, 2008

08:30-09:00 REGISTRATION

09:00-10:30  Z. Esik TUTORIAL
Iteration theories as an axiomatic foundation of automata and
language theory (1)

10:30-11:00 BREAK

11:00-12:00 B. Gerla SURVEY LECTURE
Many-valued logic and fuzzy automata

12:00-13:30 LuncH

13:30-14:30  G. Rahonis SURVEY LECTURE
Multi-valued automata: theory and applications

14:35-15:00 I. Meinecke TECHNICAL CONTRIBUTION
On the expressive power of a weighted p-calculus

15:00-15:30 BREAK

15:30-15:55 M. Ciri¢, A. Stamenkovié, TECHNICAL CONTRIBUTION
J. Ignjatovié, T. Petkovi¢
State reduction of fuzzy automata

15:55-16:20 J. Ignjatovié, M. Ciri¢, T. Petkovié TECHNICAL CONTRIBUTION
Relationships between FFA-recognizability and DFA-recognizability
of fuzzy languages

16:20-16:45 BREAK

16:45-18:00 WORKSHOP

19:00-open CONFERENCE DINNER



Friday, May 16, 2008

08:30-09:00 REGISTRATION

09:00-10:30  Z. Esik TUTORIAL
Iteration theories as an axiomatic foundation of automata and
language theory (II)

10:30-11:00 BREAK

11:00-12:00 S. Gaubert SURVEY LECTURE
To be announced

12:00-13:30 LuncH

13:30-13:55 V. Halava, T. Harju, E. Lehtonen TECHNICAL CONTRIBUTION
A survey of integer weighted finite automata

13:55-14:20 D. Kuske TECHNICAL CONTRIBUTION
From unweighted to weighted traces — alternative proofs

14:20-14:45 S. Schwarz, R. Winter TECHNICAL CONTRIBUTION
Recognizability of iterative picture languages

14:45-15:15 BREAK

15:15-15:40 A. Koprowski, J. Waldmann TECHNICAL CONTRIBUTION
Mazx/Plus tree automata for termination of term rewriting

15:40-16:05 A. Gebhardt, J. Waldmann TECHNICAL CONTRIBUTION
Weighted automata define a hierarchy of terminating string
rewriting systems

16:05-16:15 BREAK

16:15—-open JOINT RESEARCH
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Iteration Theories as an Axiomatic Foundation
of Automata and Language Theory

Zoltan Esik
Dept. of Computer Science, University of Szeged
GRLMC, Rovira i Virgily University

Fixed points and fixed point computations occur in just about every field of Computer Science.
They are often used to give semantics to recursion, in automata and language theory, programming
languages and abstract data types, concurrency and logic, to mention only a few applications. For
one familiar example, one can canonically associate with each context free grammar a vector valued
function over the domain of all subsets of the free monoid over the set of terminals, so that the
language generated by the grammar becomes a component, of the least fixed point of the function.

Typical questions about fixed points are: when do fixed points exist, and what are their proper-
ties. There are several fixed point theorems that have found applications in Computer Science, each
guaranteeing the existence of certain canonical fixed points under certain conditions. Examples of
such fixed point theorems are Tarski’s fixed point theorem and several of its variants, involving
complete lattices or cpo’s and monotone or continuous functions, categorical generalizations of
these theorems, Banach’s fixed point theorem involving proper contractions over complete metric
spaces, etc. Regarding the properties of the fixed point operations, it has been shown that all
fixed point operations share the same equational laws. Letting these equational laws the axioms,
together with some axioms special to a discipline such as languages, concurrency, we obtain an
axiomatic basis for that discipline. It is then interesting to know how far one can get with the
axiomatic approach.

The use of equations has several advantages. Proofs can be separated into two parts, where
the first part establishes the equational axioms, and the second is based on simple equational
reasoning. Such proofs have a transparent structure and are usually very easy to understand, since
manipulating equations is one of the most common way of mathematical reasoning. Moreover,
since many results depend on the same equations, the first part of such proofs usually provides a
basis to several results. Finally, the results obtained by equational reasoning have a much broader
scope, since many models share the same equations.

The aim of this tutorial is to provide an introduction to that part of the theory of fixed points
that has applications to weighted automata. We start with a treatment of fixed points in the
ordered setting and review some basic theorems guaranteeing the existence of least (or greatest)
fixed points. Then we establish several (equational) properties of the least fixed point operation
including the Bekié¢ identity, asserting that systems of fixed point equations can be solved by
the technique of successive elimination. Then we use the Beki¢ identity and some other basic
laws to introduce the axiomatic frameworks of Conway and iteration theories. We provide several
axiomatizations of these notions and show that iteration theories capture the equational properties
of the fixed point operation in a large class of models.

We also treat fixed points of linear functions over semirings and semimodules. The main results
show that for such functions, the fixed point operation can be characterized by a star operation,
possibly in conjunction with an omega operation. We show that the equational properties of the
fixed point operation are reflected by corresponding properties of the star and omega operations.

As a main application of the theory of fixed points, we will show that Kleene’s theorem, be it for-
mulated for classical automata, weighted automata, or weighted tree automata, or Buchi automata,
rests on the same axiomatics. As a second main application, we will cover the axiomatization of
the algebra of regular languages and rational power series.
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An Overview of Weighted Automata

in Natural Language Processing

Kevin Knight

Information Sciences Institute and Computer Science Department
University of Southern California
knightQisi.edu

Natural Language Processing tackles a number of practical problems, e.g.:

automated language translation (e.g., Chinese to English)
speech recognition

information retrieval

question answering

grammar checking

speech synthesis

automatic summarization

etc.

These problems are not solved with concise algorithms alone—rather, solutions must be powered
by tremendous amounts of formalized knowledge about words, pronunciations, syntax, semantics,
and the world.

Weighted automata form an elegant and satisfying way to represent such knowledge. Further-
more, learning algorithms associated with weighted automata permit us to obtain large amounts
of linguistic knowledge automatically from online text and speech corpora.

This tutorial will cover the use of weighted automata across many problems in natural language
processing. We will also illustrate, in depth, major issues in automated language translation, a
challenging problem that requires both analysis of source-language sentences and generation of
new, grammatical target-language sentences that have never been uttered before.

We will also track historical developments in both automata theory and natural language pro-
cessing. These two fields were tightly knit in the middle of the 20th century, but over time they
drifted apart, with neither theory nor practice significantly informing one another. Finite-state
methods returned to make a dramatic impact on natural language in the 1990s, when they were
coupled with automatic knowledge acquisition methods. In this century, tree automata have re-
ceived renewed interest, being able to capture linguistic transformations (such as observed in
natural language translation data) that pose difficulties for string-based automata.

Finally, we will examine a wide variety of automata models from the point of view of what is
needed in contemporary practical natural language systems. We find very good synergy—many au-
tomata theorems find wonderful application in language systems (greatly simplifying their design),
while demands of practical systems raise challenging questions for the theory side.
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Learning: from String Languages to Tree Series

Frank Drewes

Department of Computing Science, Umea University
S-901 87 Sweden

drewes@cs.umu.se

Abstract. The talk gives an overview on algorithmic learning, focusing on the field of
grammatical inference. After a very brief overview on algorithmic learning in general, some
of the major models and approaches used in grammatical inference of string languages are
explained. Finally, grammatical inference of tree languages and tree series is discussed.

1 Algorithmic Learning

Unsurprisingly, algorithmic learning is about algorithms that “learn”. However, what does this
mean? Usually, research in this field focuses on algorithms that (a) adjust, and thus improve,
their behaviour over time or (b) use limited information (such as training samples) to, eventually,
correctly recognize a general concept or compute a function. In fact, this is merely a matter of
perspective. For example, the bottom line of learning to avoid mistakes is to learn the concept
mistake. Conversely, an algorithm that learns a function f from argument-value pairs can be seen
as an algorithm that improves its behaviour when being asked for the value of f(x). Furthermore,
it is clear that concept learning (e.g., learning the concept ‘prime number’ or ‘picture of an apple’)
is a special case of function learning, namely of learning the characteristic function of the concept.

Several areas in Computer Science study aspects of algorithmic learning:

(1) Machine Learning studies learning from the point of view and using the methods of Artificial
Intelligence.

(2) Pattern Recognition is algorithmic learning whenever it is concerned with discovering general
patterns in input data.

(3) Inductive Inference, an area founded by Solomonoff in the years around 1960 [14], focuses on
learning a concept or function, usually from observations (i.e., examples). Often, statistical
methods are used, and correctness means correctness with a high degree of probability. See [3]
for a survey.

(4) Grammatical Inference addresses the problem of learning formal languages, with the additional
requirement that the algorithm shall produce an explicit grammatical or automata-theoretic
representation of the target language. See [7,10] to obtain an initial overview of the field.

Obviously, these areas are not disjoint from each other. To some extent, one may see the list above

as a series of specializations, i.e., (1) 2 (2) 2 (3) 2 (4).

Research in the field of algorithmic learning may or may not belong to theoretical computer
science. The part that does, defines the area of Computational Learning Theory (COLT). As
Angluin puts it in her survey [2], the goal of COLT is to “give a rigourous, computationally detailed
and plausible account of how learning can be done.” See also the book by Kearns and Vazirani
[11].

2 Grammatical Inference of String Languages

As mentioned, the purpose of a grammatical inference algorithm (called a learner in the following) is
to learn a target language L C X* by constructing an appropriate grammar or automaton. Whether
this is possible depends not only on the class of languages considered, but also on the learning
model: which kind of information is available to the learner, how does it get this information, and
what the criteria of success? Some of the best-known settings are the following.
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Learning from Ezxamples and Identification in the Limit Gold [8] defines two of the most natural
settings for grammatical inference: learning from text, where the learner is given an exhaustive
sequence of positive examples uy, ug, ..., i.e., L = {uy,uq,...}, and learning from an informant,
where the sequence contains both positive and negative examples (u1,b1), (ug, b2), . .., i.e., {(us, b;) |
i € N} = L x {1} UL x {0}. Furthermore, Gold proposes a criterion of success: After each piece
of information received, the learner answers with a new hypothesis h;, being an automaton or a
grammar consistent with the information seen so far. L is identified in the limit if, for some i € N,
hi = hi+1 =--- and L(hl) = L.

Probably Approzimately Correct Learning In Valiant’s PAC learning [15], success is defined in a
statistical manner. The learner is given additional parameters d,¢ (0 < d,¢ < 1), and is then
provided with examples drawn according to an unknown probability distribution D. Eventually,
it returns the automaton A learned. The error probability of A is err(A) = Problu € LA L(A) |
u € X* drawn according to D] (where A denotes symmetric difference). Now, the correctness re-
quirement is that err(A) < e (approximate correctness) with probability at least § (i.e, probably).

Query learning Angluin [1] invented query (or active) learning, where the learner can ask an oracle,
the teacher, certain types of queries. The most popular teacher of this sort is the so-called minimal
adequate teacher (MAT). Given that A is the class of automata of interest, the learner can ask
membership queries: “Does w belong to the target language?” and equivalence queries: “Does A € A
represent the target language L? If not, give me a counterexample w € L(A)AL.” Angluin’s L,
learner learns any regular language in polynomial time from a MAT, using a modified version of
Gold’s observation table.

3 Inference of Tree Languages

Results on regular languages can usually be generalised to regular tree languages, and this is
true even for inference algorithms. For instance, the notions of k-reversibility, k-testability, and
function distinguishability mentioned above can be generalised to regular tree languages, and imply
efficient learnability from text. The same holds for Angluin’s L, learner [13,5]. Results like these
are particularly interesting in view of the negative results regarding the learnability of context-free
languages, as they show that context-free languages can be learned if structural information about
the strings in the language is available.

Let us briefly describe the idea behind the L, learner for the tree case. As usual, a contezt is a
tree ¢ with a unique occurrence of a variable z, and ¢ -t denotes the tree obtained by substituting
2 in ¢ with a tree ¢. For a (regular) target language L, define the Myhill-Nerode congruence =y,
onTsx, bys=ptiff c-s € L <= c¢-t € L for all contexts c. It is well known that the index of =,
(i.e., the number of equivalence classes) is finite iff L is regular, and that the corresponding unique
minimal deterministic bottom-up tree automaton Ay, is obtained by using the congruence classes
as states.

Now, let T" be the infinite table given as follows. The rows (columns) are indexed by trees ¢
(contexts ¢, resp.), and entry T'(¢,c¢) is 1 if ¢-t € L and 0 otherwise. By definition, s =y, ¢ iff the
rows of s and t are equal. Thus, a finite subtable of T suffices to define Ay, because there are
only finitely many pairwise distinct rows and columns. Starting with the empty table Ty, the L,
learner builds such a finite subtable T;, of T'. It repeatedly constructs the automaton A; given by
the current table T; to ask an equivalence query. If L(A;) # L, the counterexample received can be
used to extend the table by new rows and columns, yielding A;1. Membership queries are mainly
needed to fill in new cells of the table. At most index(L) loop execution are needed to discover Ay,.

4 Inference of Tree Series

A natural next step is to extend grammatical inference algorithms to the case of tree series ¢: Ty, —
S, for some semiring S. The number of papers addressing this problem is still rather small. One
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may roughly divide them into two categories. The first deals with the special case of stochastic tree
languages, i.e., where S is the field R, (¢,t) € [0,1] for all t € T, and ), _(¢,t) = 1. Stochastic
languages have received particular interest in natural language processing. When dealing with the
learnability of stochastic tree languages, it is probably most natural to consider a learning-from-
text-like setting: positive examples are drawn according to a probability distribution D, and the
goal is to learn D in the limit by, e.g., constructing a weighted tree automaton (wta). For the case
where v is recognisable, Denis and Habrard have recently presented such a learner [4].

The second category of learners works on tree series that are not restricted to stochastic ones.
There seem to be only two results of this kind, both using Angluin’s MAT model and her general
algorithmic idea based on an observation table. For this, membership queries are generalised to
coefficient queries: given a tree t € T, the teacher replies with (¢, t). Of course, equivalence queries
have to be extended to the type of wta considered. The entries of the observation table are now the
values (v, c-t). One of the learners, proposed by Drewes and Vogler and improved by Maletti [6, 12],
learns a deterministically recognisable tree series i) over a commutative semifield by constructing
the corresponding minimal deterministic wta. The second learner, proposed by Habrard and Oncina
[9] learns a recognisable tree series ¥ over a field, by constructing the corresponding minimal
nondeterministic wta. Note that a field is assumed, which explains why nondeterministic devices
can be learned by Angluin’s method, whereas nothing similar has yet been achieved for the Boolean
case, where no appropriate finite algebraic characterization is known.
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Many-valued logic and fuzzy automata

Brunella Gerla

Dept. Informatics and Communications, University of Insubria
21100 Varese, Italy
brunella.gerla@uninsubria.it

In the last decades, the interest in fuzzy sets and fuzzy logic has grown from different points of
view. From one side, many engineering applications have been proposed based on the use of fuzzy
sets as a tool to solve non-linear phenomena through a linguistic representation. From another side,
fuzzy sets have motivated a renewed interest in truth-functional logics with an enlarged set of truth
values. Indeed a deep study of such logics has being portrayed in the last years and many-valued
logic has been proposed to model phenomena in which uncertainty and vagueness are involved.

Very general classes of many-valued propositional logics are the Basic logic defined in [8] as
the logic of continuous t-norms and the MTL logic defined in [7] as the logic of left-continuous
t-norm. We shall give a few details on such structures. Special cases of propositional many-valued
logics are Fukasiewicz, Godel and Product logic. In particular YL.ukasiewicz logic has been deeply
investigated, together with its algebraic counterpart, MV-algebras, introduced by Chang in [1]
to prove completeness theorem of F.ukasiewicz logic. MV-algebras can be thought of as a special
generalization of Boolean algebras in which the idempotency of conjunction and the excluded
middle low are not valid.

MV-algebras have nice algebraic properties and can be considered as intervals of lattice-ordered
groups. Lukasiewicz disjunction and conjunction are interpreted by the operations @ and ® of the
MV-algebra [0, 1] given by

z@®y=min{l,z+y}, zOy=max{0,z+y—1}.

In spite of satisfying theoretical results regarding Y.ukasiewicz logic, all the attempts to use it as
an instrument to deal with uncertainty phenomena, for example in the fuzzy context, had to deal
with one of its main characteristic: conjunction and disjunction do not distribute one with respect
to the other. This makes difficult to use it as a generalization of Boolean logic.

We stress that operations ® and @ in any MV-algebra A both are related to the same operation
in the lattice ordered group associated with A. In order to model the notion of conjunction and
disjunction one have instead to consider a lattice operation A (or dually, V) together with the
MV-algebraic operation @ (or dually ®). MV-algebras have many semiring reducts, as for example
those given by considering operations ®,V or operations @, A or even A, V.

MV-algebras operations have symmetric properties, since the negation in an MV-algebra A is
actually an isomorphism of the monoid (4, ®, 1) onto (A, @, 0) (indeed MV-algebras are De Morgan
algebras). In general, other structures related with other many-valued logics do not have such a
symmetry. Nevertheless, each of these structures has a semiring reduct.

In [2] we suggested to consider the pairs of connectives forming the semiring reducts of MV-
algebras in order to handle the mathematics behind many fuzzy systems. This approach has been
then extended to a generalization of linear algebra to a fuzzy context in [3].

In order to show in which way this representation can be useful to model fuzzy phenomena we
give examples in the field of automata following the approach of [6], where semirings have been
proposed to give a generalization of automata, the so called K-X- automata.

K-X- automata can be consider as fuzzy automata, in the sense that are non-deterministic
automata in which every transition from one state to another happens with some degree. Then each
word is recognized with a degree that must be computed by the degrees of the single transitions,
hence each fuzzy automaton accepts a fuzzy language, that is a fuzzy subset of the set of all finite
words over a given alphabet.

More recently, automata with values in semirings over the natural numbers or the real numbers
sets have been deeply investigated both to finding results on nondeterminism or infinite behavior of

18



finite automata, in the context of formal power series and of weighted automata (see [4],[5],[9], [10]).
We shall give a description of automata having values in semirings associated with BL-algebras
and MV-algebras.
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Why we need semirings in automata theory

Werner Kuich

Technische Universitiat Wien
kuich@tuwien.ac.at

The use of semirings, formal power series, matrices and fixed point theory in formal language
and automata theory yields the following advantages:

(i) The constructions needed in the proofs are mainly the usual ones.

(ii) The descriptions of the constructions by formal series and matrices do not need as much
indexing as the usual descriptions.

(iii) The proofs are separated from the constructions and do not need the intuitive contents of the
constructions. Often they are shorter than the usual proofs.

(iv) The results are more general than the usual ones. Depending on the semiring used, the re-
sults are valid for classical grammars and automata, classical grammars and automata with
ambiguity considerations, probabilistic grammars or automata, etc.

(v) The use of formal power series and matrices gives insight into the mathematical structure of
problems and yields new results and solutions to unsolved problems that are difficult, if not
impossible, to obtain by other means.

In our lecture we give examples that illustrate these advantages.
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Minimization of Weighted Automata

Andreas Maletti*

International Computer Science Institute
Berkeley, CA 94704, USA

maletti@icsi.berkeley.edu

Weighted automata are used in a variety of applications (e.g., natural language processing,
probabilistic model checking, etc). We will review minimization algorithms for weighted automata
with a strong emphasis on tree automata. In addition, partial but efficient minimization procedures
such as bisimulation minimization are considered. Special attention will be given to the runtime
complexity of the algorithms and whenever available we will substantiate the results with practical
experience gained from implementations.

* Author on leave from Technische Universitit Dresden, Faculty of Computer Science, 01062 Dresden,
Germany, with the help of financial support by a DAAD (German Academic Exchange Service) grant.
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XML Research for Formal Language Theorists
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Formal Language Theory plays a dominant role in XML research. The design of the predominant
XML schema languages is based on context-free grammars and tree automata, and widely used
navigation and transformation languages such as XPath and XSLT are closely tied to regular
expressions and tree transducers. The investigation of these schema and query languages therefore
significantly benefits from the large corpus of results in Formal Language Theory.

Conversely, XML research is also a motivation and a source of inspiration for Formal Language
Theory. Static analysis questions in XML research, for instance, motivate the deeper study of
problems such as membership testing, containment, equivalence, and minimization for various
forms of regular expressions and finite automata.

I will give an overview of this synergy between XML research and Formal Language Theory.
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Multi-valued automata: theory and applications
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We present multi-valued automata over bounded distributive lattices acting on finite words. They
constitute a special subclass of weighted automata over arbitrary semirings, and they have nice
properties due to the lattice operations. For instance for every multi-valued automaton we can effec-
tively construct an equivalent deterministic one, which moreover can be minimized. Furthermore,
the equivalence problem is decidable for the behaviors of multi-valued automata. If the underlying
lattice has a negation function, then we can show the expressive equivalence of multi-valued au-
tomata with multi-valued monadic second order sentences (cf. [1] for a more general treatment).
Usual fuzzy automata over the interval [0,1] is a great paradigm of multi-valued automata.

We deal also with multi-valued Biichi and Muller automata investigated in [2]. By extending
a well-known result for classical automata on infinite words, we prove that the families of the
behaviors of the two models coincide. We show the expressive equivalence of our automata with
multi-valued monadic second order sentences provided that the underlying lattice has a negation
mapping. Then, we compare our models with the Biichi lattice automata of Kupferman and Lustig
[3]. A subclass of Biichi lattice automata, which in fact coincides with our multi-valued Biichi
automata over De Morgan algebras, is related to lattice linear temporal logic which in turn is
related to important multi-valued model checking applications. We investigate the relation among
the multi-valued monadic second order logic and the lattice linear temporal logic. On the other
hand, we highlight future research lines motivated by the following fact. A critical point for the
(multi-valued) automata-theoretic approach of (multi-valued) model checking, is the complexity
bound for the constructions on (multi-valued) automata. For instance, we are interested in the
complexity bound for complementing (multi-valued) automata over infinite words. It turns out that
several constructions on our multi-valued Muller automata [2] have much lower complexity bounds
than the corresponding ones for Biichi lattice automata [3]. Therefore, it should be interesting to
investigate the contribution of multi-valued Muller automata to the automata-theoretic approach
of multi-valued model checking.
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State Reduction of Fuzzy Automata
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In this talk we will present the results from [1, 2] concerning state reduction of fuzzy automata. It
has been shown in [1, 2] that the size reduction problem for fuzzy automata is related to the problem
of solving a particular system of fuzzy relation equations. This system consists of infinitely many
equations, and finding its general solution is a very difficult task. From that reason we consider
certain special cases. One of them is a finite system whose solutions, called right invariant fuzzy
equivalences, are common generalizations of right invariant or well-behaved equivalences used in
reduction of non-deterministic automata, and congruences on fuzzy automata studied in [8]. A
procedure for constructing the greatest right invariant fuzzy equivalence contained in a given fuzzy
equivalence has been given in [1], and it has been shown that the method for reduction of fuzzy
automata based on right invariant fuzzy equivalences gives better results than all other methods
developed in [3-8].

In [2], an analogue of a right invariant fuzzy equivalence, called a left invariant fuzzy equivalence,
has been considered. It has been shown that the combination of reduction methods based on right
invariant and left invariant fuzzy equivalences can give better results than using only one of these
methods. It has been also proved that using quasi-orders can give even better results than using
fuzzy equivalences.

Acknowledgment. Research supported by Ministry of Science, Republic of Serbia, Grant No.
144011
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We study probability distributions over free algebras of trees. Probability distributions can be
seen as particular (formal power) tree series [2,7], i.e. mappings from trees to a semiring K. A
widely studied class of tree series is the class of rational (or recognizable) tree series which can be
defined either in an algebraic way or by means of multiplicity tree automata. We argue that the
algebraic representation is very convenient to model probability distributions over a free algebra of
trees. First, as in the string case, the algebraic representation allows to design learning algorithms
for the whole class of probability distributions defined by rational tree series. Note that learning
algorithms for rational tree series correspond to learning algorithms for weighted tree automata
where both the structure and the weights are learned. Second, the algebraic representation can be
easily extended to deal with unranked trees (like XML trees where a symbol may have an unbounded
number of children). Both properties are particularly relevant for applications: nondeterministic
automata are required for the inference problem to be relevant (recall that Hidden Markov Models
are equivalent to nondeterministic string automata); nowadays applications for Web Information
Extraction, Web Services and document processing consider unranked trees.

1 Representation Issues

Trees, either ranked or unranked, arise in many application domains to model data. For instance
XML documents are unranked trees; in natural language processing (NLP), syntactic structure can
often be considered as treelike. From a machine learning perspective, dealing with tree structured
data often requires to design probability distributions over sets of trees. This problem has been
addressed mainly in the NLP community with tools like probabilistic context free grammars [8].

Weighted tree automata and tree series are powerful tools to deal with tree structured data. In
particular, probabilistic tree automata and stochastic series, which both define probability distri-
butions on trees, allow to generalize usual techniques from probabilistic word automata (or hidden
markov models) and series.

Tree Series and Weighted Tree Automata In these first two paragraphs, we only consider the case
of ranked trees. A tree series is a mapping from the set of trees into some semiring K. Motivated by
defining probability distributions, we mainly consider the case K = R. A recognizable tree series [2]
S is defined by a finite dimensional vector space V over K, a mapping p which maps every symbol
of arity p into a multilinear mapping from V? into V' (u uniquely extends into a morphism from
the set of trees into V), and a linear form A. S(t) is defined to be A(u(t)). Tree series can also
be defined by weighted tree automata (WTA). A WTA A is a tree automaton in which every rule is
given a weight in K. For every run r on a tree ¢ (computation of the automaton according to rules
over t), a weight A(t,r) is computed multiplying weights of rules used in the run and the final
weight of the state at the root of the tree. The weight A(t) is the sum of all A(¢,7) for all runs r
over t.
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For commutative semirings, recognizable tree series in the algebraic sense and in the automata
sense coincide because there is an equivalence between summation at every step and summation
over all runs. It can be shown, as in the string case, that the set of recognizable tree series defined
by deterministic WTA is strictly included in the set of recognizable tree series. A Myhill-Nerode
Theorem can be defined for WTA over fields [1].

Probability Distributions and Probabilistic Tree Automata A probability distribution S over trees is
a tree series such that, for every ¢, S(¢) is between 0 and 1, and such that the sum of all S(¢) is equal
to 1. Probabilistic tree automata (PTA) are WTA verifying normalization conditions over weights of
rules and weights of final states. They extend probabilistic automata for strings and we recall that
nondeterministic probabilistic string automata are equivalent to hidden Markov models (HMMS).
As in the string case [5], not all probability distributions defined by WTA can be defined by PTA.
However, we have proved that any distribution defined by a WTA with non-negative coefficients can
defined by a PTA, too.

While in the string case, every probabilistic automaton defines a probability distribution, this
is no longer true in the tree case. Similarly to probabilistic context-free grammars [9], probabilistic
automata may define inconsistent (or improper) probability distributions: the probability of all
trees is less than one. We have defined a sufficient condition for a PTA to define a probability
distribution and a polynomial time algorithm for checking this condition.

Towards unranked trees Until this point, we only have considered ranked trees. However, unranked
trees can be expressed by ranked ones using an isomorphism defined by an algebraic formula-
tion ([3], chapter 8). It consists in using the right adjonction operator defined by f (1, ..., tn—1)Qt, =
f(t1,...,tn); any tree can then be written as an expression whose only operator is @, and thus as
a binary tree: e.g., b(a, a, ¢(a, a)) corresponds to Q(Q(Q(b,a),a), @(Q(c,a),a)). WTA for unranked
trees can be defined as WTA for ranked trees applied to the algebraic formulation. We call such
automata weighted stepwise tree automata (WSTA).

Hedge automata are automata for unranked trees. Each rule of a hedge automaton [3] is written
f(L) — q where L is a regular language of word with the set of states of the automata as its
alphabet. For weighted hedge automata (WHA), the weight of the rule f(u) — ¢ is the product
of a weight given to the whole rule f(L) — ¢ and the weight of u according to a weighted word
automata associated to f(L) — ¢q. When K is commutative, WSTA and WHA define the same weight
distributions on unranked trees.

Probabilistic hedge automata can be defined by adding the same kind of summation conditions
than on WHA, but it has yet to be shown that they can be expressed by PTA through algebraic
formulation. We don’t know yet weither defining series on unranked trees directly is possible,
although it can be achieved using the algebraic formulation.

2 Learning Probability Distributions

Inference and Training PTA can be considered as generative models for trees. The two classical
inference problems are : given a PTA A and given a tree ¢, compute p(t) which is defined to the
sum over all of all p(¢,7); and given a tree ¢, find the most likely (or Viterbi) labeling (run) 7 for ¢,
i.e. compute 7 = arg max,. p(r|t). It should be noted that the inference problems are relevant only
for nondeterministic PTA. The training problem is: given a sample set .S of trees and a PTA, learn
the best real-valued parameter vector (weights assigned to rules and to states) according to some
criteria. For instance, the likelihood of the sample set or the likelihood of the sample over Viterbi
derivations. Classical algorithms for inference (the message passing algorithm) and learning (the
Baum-Welch algorithm) can be designed for PTA over ranked trees and unranked trees.

Learning Weighted Automata The learning problem extends over the training problem. Indeed,

for the training problem, the structure of the PTA is given by the set of rules and only weights
have to be found. In the learning problem, the structure of the target automaton is unknown. The
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learning problem is: given a sample set S of trees drawn according to a target rational probability
distribution, learn a WTA according to some criteria. If the probability distribution is defined by a
deterministic PTA, a learning algorithm extending over the unweighted case has been defined in [4].
However, this algorithm works only for deterministic PTA. We recall that the class of probability
distributions defined by deterministic PTA is strictly included in the class of probability distributions
defined by pta [1].

Learning Recognizable Tree Series and thus learning WTA can be achieved thanks to an algorithm
proposed by Denis and Habrard [6]. This algorithm, which benefits from the existence of a canonical
linear representation of series, can be applied to series which take their values in R or Q to learn
stochastic tree languages. It should be noted that the algebraic view allows to learn probability
distributions defined by nondeterministic WTA. Learning probability distributions for unranked
trees is ongoing work.
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A new compressed representation of DAWG’s (directed acyclic word graphs [2]) was developed
for large sets of words for natural languages. The representation was used in applications like
navigation in large digital encyclopedias or search applications, e. g. with up to more than 800,000
words.

The advantage of a DAWG is the fast access time for stored words (O(n) with n: maximum
length of the stored words). But the disadvantage is the memory consumption, especially if the
DAWG is naively implemented by an array of |X| pointers for each node (|X| x 4 B per node),
where |X] is the size of the underlying alphabet. This is particularly true for natural languages,
e. g. with alphabets of size 30 to 100, since in this case each node has, as an average, only a few
children and most of the stored pointers are null.

One possible solution for the memory problem is the usage of bit vectors for each DAWG node.
A bit in the vector of size |X| is set if and only if the son of the corresponding character exists.
For each node a bit vector and, optionally, pointers to existing sons and weights for ranking of the
represented words are stored.

A new approach was developed for DAWG’s with large alphabets. The technique was derived
from text compression with finite context models. Algorithms like the PPM family (prediction
by partial matching [1], [3]) are using preceding characters to predict and compress the following
characters of a text. For example, in English texts it is very probable that q is followed by u. PPM
is one of the best methods for text compression.

In an analogous manner the characters preceding a DAWG node are used to predict the local
subalphabet of a node and a much smaller bit vector has to be stored.
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The concept of a tree-walking automaton (for short: twa) was introduced in [1] for modelling
the syntax-directed translations from strings to strings. Recently its importance grew in XML
theory. A twa A is a sequential finite-state tree acceptor with finitely many transition rules, which,
obeying its state-behaviour, walks along the edges of an input tree s € Ty, where X' is the input
ranked alphabet of A. Then A accepts s if there is an accepting run on s, i.e., a finite walk on s
from the initial state to the accepting state. The tree language recognized by a twa is effectively
regular, however there exists a regular tree language that cannot be recognized by any twa [2].
There are several extensions of twa which still recognize regular tree languages, such as twa with
weak pebbles [4], strong pebbles [5] and also invisible pebbles [6].

We introduce the weighted version of a twa. In a weighted tree-walking automaton A (for short:
wtwa), every transition rule has a weight taken from a commutative semiring K. We assume that
A is noncircular, i.e., it does not enter into a loop of transitions. The weight of a run of A on
an input tree s is the product of the weights of the applied transition rules, while the weight of s
computed by A is the sum of the weights of all the accepting runs of A on s. Since A is noncircular,
it has only finitely many accepting runs on s. In this way, A recognizes a tree series S4 : Ty, — K,
where S4(s) is the weight of s for every input tree s.

We investigate the recognizing power of wtwa. For this we consider the reduced weighted MSO
logic of [3] which characterize effectively the class of regular tree series over a commutative semiring.

We show that the tree series recognizable by noncircular wtwa can be defined in reduced weighted
MSO logic.
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Our aim is to develop a theory of varieties of weighted tree languages. More specifically, we
consider varieties of tree series of the kind studied by Berstel and Reutenauer [1], i.e., tree series
over a field.

Let K be a field, X a ranked alphabet and X a leaf alphabet. Then a KX X -tree series is a
map S : Tx(X) — K, where Tx(X) is the set of X' X-trees, and a K X-algebra is a system C =
(C,+,0, %), where (C,+,0) is a K-vector space and each symbol o € X is realized as a multilinear
operation on C' of the appropriate arity. Our syntactic algebras of tree series are essentially those
considered in [2] and derived from the corresponding notion for string series [4]. Hence, the syntactic
K X -algebra SA(S) of a recognizable K X' X-tree series S is a finite-dimensional K X-algebra. Rather
than using syntactic ideals as in [4, 2], we start with syntactic congruences that have a more obvious
intuitive meaning. Similarly as in the case of ordinary tree languages (cf. [5]), it is convenient to
present the basic theory of syntactic congruences and syntactic algebras for series over general
XY '-algebras.

A variety of KX -tree series is a family V = {V(X)} x of tree series with certain natural closure
properties, where for each X, V(X)) is a set of recognizable K X' X -tree series. The variety theorem,
akin to Eilenberg’s [3] fundamental theorem, establishes — via syntactic algebras — a correspondence
between them and varieties of finite-dimensional K X'-algebras.
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Rewriting is pattern replacement in context. It serves as a model of computation which is Turing-
complete. Thus all “interesting” semantic properties are undecidable, including the very natural
question of termination: for a given rewriting system, are all derivations finite? Since the problem
is significant in practice, e.g. for the analysis of software, one is interested in semi-algorithms:
computable methods of proving termination that are sound, but not complete.

One such method to prove termination of string rewriting is “matrix interpretation” [HWO06].
These interpretations are in fact N-weighted finite automata. The method has been generalized
from string rewriting to term rewriting [EWZ06]. Several automated termination provers now
implement this method.

The method in fact solves a more general problem: that of relative termination. A rewriting
system R terminates relative to a rewriting system S if each mixed derivation (containing R and S
steps in any order) contains only finitely many R steps. While being an interesting concept in itself,
relative termination helps to solve standard termination problems because it allows to compose
termination proofs: if R terminates relative to S then termination of RUS follows from termination
of S, and the latter can be proved separately. This corresponds to a lexicographic combination of
interpretations.

One direction for extension of the matrix method is to pick a weight semi-ring that strictly
includes N. In [GHWO07] we reported on some experiments with non-negative rationals. In the
present note, we provide a basis for a systematic approach to compare these (and other) termination
methods, by defining a suitable hierarchy, and we prove some of its properties.

Automata and Rewriting Systems. A weighted automaton A is called weakly (strictly, resp.) com-
patible with a rewriting system R if for each rewrite step u — g v, the sequence of weights A(u), A(v)
computed by the automaton is weakly (strictly, resp.) decreasing.

There is a local criterion on A that can effectively be checked and that implies compatibility as
defined here. Basically, it is enough to compare interpretations of left-hand sides and right-hand
sides of rules (as matrices).

If an automaton A with a well-founded weight domain W is strictly compatible with a rewriting
system R and weakly compatible with a rewriting system S, then R is terminating relative to S.

A Notation for Termination Proofs by Rule Removals. We denote by (W, n) the set of pairs of
rewriting systems (R, .S) for which an automaton exists with weight domain W and n states that

is strictly compatible with R\ S and weakly compatible with S. We also write R W) S. This
notation indicates that the termination problem of R can be reduced to the termination problem
of S by removing the rules in R\ S due to an interpretation computed by an automaton with the
given parameters.

The relational notation also suggests composability. For any sequence of rewriting systems R;
and relations P;, from Ry }i }ﬁ R, it follows that Ry \ R, terminates relative to R,,. If
R, =0, then Ry terminates.

If P, =...= P, = P, we write Ry .~ R, or (Ro,Rn) € P*.

We abbreviate Up>1 (W, n) by 9(W). Then in our notation M(N) is the set of all rewrit-
ing systems that have a one-step termination proof using some natural-weighted automaton, and
M(N)* is the set of all systems with a multi-step termination proof using such automata.
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Number of States. For each d < d’', M(W,d) C M(W,d’). This follows easily since we can introduce
useless states in an automaton of size d, to obtain an automaton of size d’ that computes the same
function.

Using the Amitsur-Levitzki theorem, for each d we find some d’ > d such that the inclusion is
strict. This implies that the hierarchy is infinite. It remains open whether it is strict at each level.
It is known that (W, 1) C M(W, 2) C M(W, 3).

Choice of Weight Domain. For each d, MM(N, d) C 9MM(Qx>0, d). This is clear since N is a sub-semi-
ring of on.

We give an example (R, S) € IM(Qxo,3)? \ M(N)*, that is, with a two-step termination proof
of rational-weighted automata of size 3, but no natural-weighted termination proof of any size and
number of steps.

Proofs with one or many steps. Obviously (W, d) C MW, d)*.
There is an example (R, () € M(N,2)? \ M(N), that is, a system with a two-step proof using a
two-state automaton, but no one-step proof (for automata of any size) [HWO06].

References

[EWZ06] Jorg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix interpretations for proving
termination of term rewriting. In Ulrich Furbach and Natarajan Shankar, editors, IJCAR, volume
4130 of Lecture Notes in Computer Science, pages 574-588. Springer, 2006.

[GHWO07] Andreas Gebhardt, Dieter Hofbauer, and Johannes Waldmann. Matrix evolutions. In Workshop
on Termination (WSTO07), 2007.

[HWO06] Dieter Hofbauer and Johannes Waldmann. Termination of string rewriting with matrix inter-
pretations. In Frank Pfenning, editor, RTA, volume 4098 of Lecture Notes in Computer Science,
pages 328-342. Springer, 2006.

35



A Survey of Integer Weighted Finite Automata

Vesa Halava, Tero Harju, Eero Lehtonen

Department of Mathematics
FI-20014 Turku, Finland
{vesa.halava, tero.harju, elleht}Qutu.fi

The integer weighted automata, denoted by F A(Z), are closely related to 1-turn automata as
considered especially by Ibarra [3]. In our model the counter is replaced by a weight function of
the transitions, and while doing so, the finite automaton becomes independent of the counter. To
be precise, the weight function is calculated additively and the input is accepted if and only if the
weight of its path is zero.

In this survey, we concentrate on undecidability results concerning integer weighted automata.
First we show that the universe problem for the F A(Z) is undecidable [1]. This is done by giving
an explicit 4-stated unimodal integer weighted automaton that accepts every word in A* if and
only if a given instance of Post Correspondence Problem has a solution.

We also give a matrix representation [2] of integer weighted finite automata via Laurent poly-
nomials. This leads to an analogue of a fundamental result in the theory of rational series and also
gives an undecidability result for these matrices.

The main purpose of this survey is to present the basics and also some highlights of the theory
of integer weighted automata. We will mainly focus on original considerations made by the first
two authors. Also, some open problems are discussed.
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Finite State Machines (FSMs) have been used in the field of statistical language modeling
for a very long time. The majority of existing approaches uses them merely as a convenient data
structure, mostly disregarding the underlying algebra with its well-defined operations like union and
intersection. Instead of that, a bunch of specialized algorithms for the construction and application
of statistical language models (LMs) are used (e.g. [1], [2]).

We think that this way of conceiving and using LMs is not desirable since it compromises the
modularity of larger applications built on FSMs. Alternatively, the algebra of weighted rational
languages (WRLs) and transductions (WRTSs, cf. [3]) should suffice. As a case study, we present
an alternative method for constructing LMs (N-gram models, including discounting, back-off, and
interpolation as well as class-based and discontinuous N-gram models) in a completely algebraic
way. Besides the usual rational operations, we need in addition only simple trivially weighted
finite-state transducers depending on the order NV and the alphabet X' under consideration. These
transducers map prefixes and/or suffixes of N-gram strings to ¢ or other symbols.

Creating an N-gram model consists of counting N-grams in a corpus, normalizing these counts,
handling sparseness by smoothing, and finally applying an algorithm resulting in an weighted FSM
accepting strings of arbitrary length. To give an impression how to handle all these steps within
the algebra of weighted rational languages, we exemplify our approach focusing on the step of
transforming N-gram frequencies into conditional probabilities.

The conditional probability of an N-gram is computed by equation (1).
. C(w;:}\f—klwi)

> C(w;Z s w)

w

Pr(wi|w2:]1v+1)

(1)

Given an WRL €y : YN — R* mapping N-grams to their frequencies, this normalization is
performed in two steps: To represent the denominator in equation (1) we introduce an WRT
ek« XN x XN — R* which maps all k-gram suffixes to each other (what in effect assigns each
weight to every symbol):

8];\7(1"9) = (ZN_k : (2 X E)k)(x,y) (2)

Setting k = 1, the application €%/[Cy] performs the summing over the unigram suffixes of all N-
grams sharing the same N — 1-gram prefix as demanded by equation (1)*. The second step is the
division of the corresponding N and N — 1-gram counts. To model this arithmetic operation, one
can take advantage of two properties of the real semiring (R = (RT,+,-,0,1)): 1) The abstract
semiring multiplication ® is instantiated in R with the actual multiplication of real numbers. 2) R
is a division semiring ([4]) that is, Va # 0 € K, 3b € K such that a ® b = 1. Given these properties
and the fact that weighted intersection combines weights by ® ([5]), it is possible to represent
division by intersection with multiplicative inverses. We therefore introduce an operation called
®-negation denoted by ~! which replaces every weight with its multiplicative inverse. It is now
possible to define the following WRL P4, : ¥ — R* which represents the conditional probabilities
of the counts in Cy.

Py (x) = En N (Ex[CN]) (2) (3)

* Note that the application J[L] is an abbreviation for the second projection of the composition of ID(L)
and 7.

37



Our approach is implemented on the basis of weighted finite-state machines (WFSM) corresponding
to the given WRLs. This enables us to make use of the usual optimization procedures for WFSMs.
Moreover, the character of the given WRLs allows for representing the corresponding WFSMs in
a virtual way permitting access to states and transitions in constant time and consuming only a
constant amount of memory independent of the size of N and Y. The cross-product of X' used in
&k would otherwise need a quadratic number of transitions relative to the size of X.

We will show that the complexity of the complete algebraic specification — which leads to a
minimal LM, as long as the N-gram frequencies are represented as a minimal WFSM — is linear in
the size of the given training corpus.
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In this talk we will present the results from [4,5], concerning relationships
between recognizability of fuzzy languages by fuzzy finite automata (FFA-recognizability) and
their recognizability by deterministic finite automata (DFA-recognizability). Equivalence between
FFA-recognizability and DFA-recognizability of fuzzy languages over a locally finite complete lat-
tice was established by Bé&lohlavek [1]. A more general result was obtained by Li and Pedrycz [6],
who studied fuzzy automata over a lattice ordered monoid .#, and proved that FFA-recognizability
is equivalent to DFA-recognizability if and only if the semiring reduct Z* of .Z (with respect to
the join and multiplication operations) is locally finite. B&lohlavek [1] and Li and Pedrycz [6] gave
a method for determinization of fuzzy automata, which results in a finite automaton if and only if
Z* is locally finite. Another method, developed in [4] for fuzzy languages over a complete residu-
ated lattice .Z, can result in a finite automaton even if .Z* is not locally finite, and always gives
a smaller automaton than the method by Bélohlavek and Li and Pedrycz. Certain criterions for
finiteness of the resulting deterministic automaton have been obtained in [4, 5], where it has been
shown that this automaton is a minimal deterministic automaton recognizing all fuzzy languages
which can be recognized by the original fuzzy automaton.

In [5] the authors studied DFA-recognizability of fuzzy languages with membership values in an
arbitrary set having two distinguished elements 0 and 1, which are needed to take crisp languages
into consideration. DFA-recognizability of these fuzzy languages has been characterized through
their syntactic right congruences and syntactic congruences, and it has been proved that for any
fuzzy language there exists a minimal deterministic automaton recognizing it, which is unique up to
an isomorphism. This automaton has been constructed by means of derivatives of a fuzzy language,
as well as by means of derivatives of certain crisp languages associated with a fuzzy language (kernel
and cut languages), and an algorithm for minimization of a deterministic automaton which recogni-
zes a fuzzy language has been given. A similar algorithm, for deterministic automata recognizing
fuzzy languages over a distributive lattice, has been recently given by Li and Pedrycz [7].

Recognizability of fuzzy languages by finite monoids (FM-recognizability) has been recently
studied by Bozapalidis and Louscou-Bozapalidou [2, 3], who have established certain relationships
between FM-recognizability and FFA-recognizability of fuzzy languages. In [5] the authors have
shown that FM-recognizability of fuzzy languages is equivalent to DFA-recognizability.

Acknowledgment. Research supported by Ministry of Science, Republic of Serbia, Grant No.
144011
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The sequentiality /unambiguity problem is one of the most intriguing open problems in the

theory of min-plus automata: decide (constructively) whether some given min-plus automaton
admits a sequential /unambiguous equivalent. This problem is wide open despite it was studied by
several researchers, e.g. [1,2,4, 5].

In 2004, it was shown by KLIMANN, LOMBARDY, MAIRESSE, and PRIEUR that the sequential-

ity /unambiguity problem is decidable for finitely ambiguous min-plus automata [2].

The class of polynomially ambiguous min-plus automata lies strictly between the classes of

finitely ambiguous and arbitrary min-plus automata.

In the talk, we generalize the result from [2] by showing that the sequentiality /unambiguity

problem is decidable for polynomially ambiguous min-plus automata. For this, we have to handle
several problems:

1

2.

. The equivalence problem for polynomially ambiguous min-plus automata is undecidable [3].
Thus, we cannot decide state equivalence in our proofs.

The key construction in [2] relies on a decomposition of the given finitely ambiguous min-plus
automaton into a finite family of unambiguous min-plus automata. Such a decomposition is
not possible for polynomially ambiguous min-plus automata. We overcome this problem by
developing a theory of so-called metatransitions.

The proof in [2] relies on pumping techniques. We can show by an example that pumping
techniques are not sufficient to decide the sequentiality /unambiguity problem for finitely am-
biguous min-plus automata. We develop nested pumping techniques which lead us to interesting
Burnside type problems for matrices over the tropical semiring.
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Term rewriting is a model of computation. It serves as the basis for functional programming and
for formal (algebraic) specification. Termination of rewriting therefore is an interesting property.
It is undecidable in general, but there are several semi-algorithms, used by automated termination
provers.

One method of proving termination is interpretation into a well-founded algebra. While polyno-
mial interpretations (over the naturals) are well-known, a recent development is the matrix method
[HW06,EWZ06] that uses linear interpretations over vectors of naturals, equivalently, N-weighted
automata. In [Wal06,Wal07] we extended this method (for string rewriting) to arctic automata, i.e.
on the max/plus semi-ring on {—oco} UN. Its implementation in the termination prover Matchbox
[Wal04] contributed to this prover winning the string rewriting division of the 2007 termination
competition [Mar(04].

The first contribution of the present work is a generalization of arctic termination to term
rewriting. We use interpretations given by weighted tree automata. We restrict to the special case
of automata where each transition function is of the form (x1,...,z,) — Mo+M;y-21+.. .+ My 2y
Here, z; are (column) vector variables, My is a vector and Mj, ... are square matrices. Operations
are understood in the semi-ring.

Since the max operation is not strictly monotonic in single arguments, we do not obtain mono-
tone interpretations, but only weakly monotone interpretations. These cannot prove termination,
but only top termination, where rewriting steps are only applied at the root of terms. This is a
restriction but it fits with the framework of the dependency pairs method [AGO00] that transforms
a termination problem to a top termination problem.

The second contribution is a generalization from arctic naturals to arctic integers, i.e. {—oo}UZ.
Arctic integers allow e.g. to interpret function symbols by the predecessor function, and this
matches the “intrinsic” semantics of some termination problems. There is previous work on poly-
nomial interpretations with negative coefficients [HMO4]. It uses ad-hoc max operations in several
places. The semi-ring of arctic integers provides a general framework (under the restriction that
the polynomials are linear).

The third contribution is that all definitions, theorems and proofs have been formalized with the
proof assistant Coq [BCO4]. This extends previous work [KZ08] and will become part of the CoLoR,
project [BDCGT06| that gathers formalizations of termination techniques and employs them to
certify termination proofs found automatically. In 2007, the certified category of the termination
competition was won by the termination prover TPA [Kop06] that uses CoLoR.

A method to search for arctic interpretations is implemented for the termination prover Match-
box. It works by transformation to a boolean satisfiability problem, and applying a state-of-the-art
SAT solver. For several termination problems that could not be solved in last year’s termination
competition it finds proofs via arctic tree automata and the new CoLoR. version certifies them.
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A large body of theoretical computer science deals with properties of languages as sets of finite
words. These words can be understood as the sequence of events performed by some system. This
modelling works fine for sequential systems because of the linear nature of words. Mazurkiewicz,
in 1977, proposed a generalization of words nowadays called Mazurkiewicz traces that allows to
also model some concurrency. Since its introduction, much work has been devoted to the transfer
of results on word languages to trace languages (cf. the handbook “The book of Traces”). One
such result is Kleene’s theorem equating the recognizable and the rational languages. Ochmanski
succeeded in transfering this result to trace languages showing that the recognizable trace languages
are precisely the c-rational ones.

For sequential systems, it is not just interesting to ask whether a particular word is generated,
but also to know the number of different ways it can be generated. This question developed into
the theory of weighted automata and formal power series. A fundamental result is Schiitzenberger’s
theorem from 1961, equating the behaviors of weighted automata with the set of rational formal
power series.

These two distinct generalizations of Kleene’s theorem were re-joint by Droste & Gastin in
1999 who investigated weighted trace automata and formal power series over partially commuting
variables.

The theorems by Kleene, by Schiitzenberger, by Ochmariski, and by Droste & Gastin show that
all rational languages, formal power series, trace languages, or formal power series over partially
commuting variables are recognizable. All the proofs follow the line of Kleene’s proof (namely
showing the closure of recognizable objects with respect to all rational operations) albeit with
non-trivial additions.

In this talk, we present an alternative proof of Droste & Gastin’s characterisation of the behavior
of weighted trace automata. The main novelty lies in the fact that we derive their result as a
corollary to Ochmarniski’s theorem. In other words, we derive a result on weighted trace automata
from a theorem on unweighted trace automata.
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We introduce the model of weighted top-down tree automata (WTTA for short) with discounting.
These automata are usual weighted top-down tree automata, where the discounted weight of a run
on an input tree, is computed by discounting the weight of every node according to its distance from
the root of the tree. More precisely, for a ranked alphabet X' and a semiring K, a ®-discounting
over X and K is a family ¢ = (¥, ), 5, of endomorphisms of K indexed by the alphabet X. Given
a WITA M over X and K, a tree t € T, and a run r; of M over ¢, the weight of every node
w € dom(r) is discounted by & according to the path from the root of ¢ to w. In this way, the nodes
occurring at the same level of the tree get a weight discounted by the same grade. We show that
the class K?77¢¢ ((Tx;)) of formal power tree series recognized by WTTA over a ranked alphabet
X’ and a commutative semiring K with a @-discounting, coincides with the class of @-rational tree
series over X and K, i.e. a Kleene theorem. Here, for our @-rational tree operations, it suffices
to incorporate the @-discounting in top-concatenation and in a-concatenation. By considering the
identity discounting, we obtain as a special case the Kleene theorem of Droste, Pech and Vogler
[2]. Furthermore, by applying our result to monadic ranked alphabets (i.e. ranked alphabets with
symbols of rank 0 and 1), we get the Kleene-Schiitzenberger theorem of Droste and Kuske [1] for
skew word series.

Then, we introduce a weighted MSO logic with discounting for finite trees. In fact, we use
the logics of Droste and Vogler [4] and we incorporate the discounting only in the semantics of
the first order universal quantifications. For this logic, we prove the expressive equivalence of &-
recognizable tree series with two fragments of @-definable sentences. The first one called restricted
is semantically determined. The latter called almost existential is syntactically defined, and for the
equivalence result we require that the additive monoid of the underlying semiring is locally finite.

For our constructions it is convenient to work with weighted bottom-up tree automata with
discounting. Trivially the classes of the behaviors of the two models coincide.

In the second part of the paper, we consider weighted Muller tree automata with discounting
over the max-plus Ry ax and the min-plus Ry,;,, semirings. By using the discounting parameters, we
get rid of the completeness axioms of the underlying semirings required in [5]. Then, we enrich our
weighted MSO logics (for finite trees) with the formulas = y and VX . ¢, but we still discount the
semantics of the weighted formulas only in the first order universal quantifications. We show that
the class of discounted Muller recognizable tree series coincides with two fragments of weighted
sentences of our logics. The restricted which is defined semantically and the incomplete universal
which is defined syntactically. If we restrict ourselves to monadic alphabets, then we can drop the
second order universal quantifiers from our logic. Therefore, we obtain as a special case a recent
result of Droste and Rahonis [3] connecting discounted w-recognizable word series with infinitary
series definable by discounted MSO-sentences. This fact highlights the robustness of the theory of
discounted weighted logics for infinite words and trees.
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Model checking of finite state systems has become an established method for automatic hardware
and software verification and led to numerous verification programs used in industrial application.
In order to verify recursive programs it is necessary to model them as pushdown systems rather than
finite automata. This has motivated Alur and Madhusudan [3,4] to define the classes of nested
word languages and visibly pushdown languages, which is a proper subclass of the context-free
languages and exceeds the regular languages. These classes gained huge interest and set a starting
point for a new research field, see e.g. [1,2,5, 6] among many others.

The goal of this contribution will be: 1. to introduce a quantitative automaton model and a
quantitative logic for nested words being equally expressive, 2. to establish a connection between
nested words and series-parallel-biposets which have been studied by Esik & Németh [9] and
Hashiguchi et. al. (e.g. [10]) and 3. to give a characterization algebraic formal power series by
means of weighted logic.

On order to be able to model quantitative properties of systems, extensions of existing models
to quantitative models as for example weighted automata have been investigated. We introduce
and investigate weighted nested word automata which we propose as a quantitative model for
sequential programs with recursive procedure calls. Due to the fact that we define them over
arbitrary semirings they are very flexible and can e.g. model probabilistic or stochastic systems.
As the first main result, we characterize their expressiveness using weighted logic as introduced by
Droste and Gastin [8], generalizing a result of Alur and Madhusudan.

To show our result we establish a new connection between so-called series-parallel-biposets and
nested words. The class of sp-biposets forms the free bisemigroup which has been investigated by
Hashiguchi et. al. (e.g. [10]) and a language theory for series-parallel-biposets has been developed
by Esik and Németh [9]. We anticipate that the connection between nested words and sp-biposets
can be utilized to obtain further results.

Using projections of nested word series and applying the above mentioned result we obtain the
second main result, a characterization of algebraic formal power series in terms of weighted logic
generalizing a result of Lautemann, Schwentick and Thérien [13] for context-free languages.
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The p-calculus (cf. [1,6]) is a well-established and important notion in computer science. It com-
bines advantages both of logic (a well-structured notation) and of automata (algorithmic problems
are solved by computing fixed points). Different temporal logics are a fragment of the u-calculus.

In recent years, multi-valued and weighted logics attracted more and more interest. A weighted
monadic second-order logic over finite words was introduced [3]. Here, weights from an arbitrary
commutative semiring are appended. A fragment of this logic turned out as semantically equivalent
to the behaviors of weighted finite automata. But for the description of temporal properties the
use of modal operators seems more reasonable. Several papers (cf. [5,2,4, 7]) deal with such multi-
valued temporal logics and attack the model checking problem in a multi-valued setting. The
values are taken from certain finite distributive lattices £ (De Morgan algebras). Then multi-valued
Kripke structures are considered, i.e., atomic propositions in the states and/or the transitions of the
structure take values in L. For several temporal logics and the p-calculus over these multi-valued
Kripke structures the model checking problem was solved (either by a reduction to the classical
case or by attacking it directly).

Here, we turn our attention to the expressive power. We define a weighted p-calculus on finite
and infinite words and show the coincidence of a conjunction-free fragment with the class of w-
rational formal power series. Hereby, the weights are taken from a distributive complete lattice.
Moreover, we discuss for which other semirings the result may carry over.
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During the last years, weighted timed automata (wta) have received much interest in the real-
time community. Weighted timed automata are an extension of timed automata [2] and allow to
assign weights (costs) to both locations and edges. This model has been introduced independently
by Alur et al. [3] and Behrmann et al. [4]. It allows the modelling of continuous consumption of
resources, and thus, enables to represent e.g. scheduling and planning problems. Consequently,
there has been much research on problems as optimal reachability and model checking [8], [10], [1].
However, there has been no algebraic characterization of the behaviour of wta so far. We attempt
to fill this gap by providing a Kleene-Schiitzenberger theorem for wta [14]. We apply the theory
of weighted finite automata [6], [16], [15], and define wta over a semiring, resulting in a model
that subsumes previous definitions in the literature, e.g. [3], where costs for reaching a location are
computed by taking the infimum of the running weights of all runs, or [9], a multi-priced variant of
a wta. For giving a Kleene-Schiitzenberger theorem, we combine the approach of Schiitzenberger
[17] as well as a recent approach of a Kleene-type theorem for (unweighted) timed automata by
Bouyer and Petit [11]. Our main result also implies Kleene-type theorems for several subclasses
of wta, i.e., weighted finite automata, timed automata, timed automata with stopwatch observers
[12].

Currently, we are investigating whether there is a Biichi-type theorem for wta, i.e., are wta
expressively equivalent to some weighted timed version of monadic second-oder logic. For this we
are trying to combine methods of Wilke [18], Droste and Gastin [13] and Bouyer [7].
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Picture languages generated by an iterative process occur in image compression [11] and the
creation of fractal pictures [6].

Every letter (m,n) in the alphabet Ay = {0,...,k — 1}? is interpreted as a position in a k x k-
square and every word w € A} as position

[w|—-1 lw|—1
Pos(w) = Z Wl(wi)ywl—i—l’ Z 7T2(wi)k,|w|—i—1
i=0 i=0

in a square of side kIl where |w| is the length of the word |w|.

For a semiring W, we will consider pictures with "colors" in W, i.e. functions p : {0,...,m} x
{0,...,n} — W. Then every W-valued word language L : A;, — W (also known as formal power
series [1]) defines a picture language

picture(L) = {p; : {0,..., k" —1}*> = W | i € N}
where for every i € N and every (m,n) € {0,...,k* —1}2
pi(m,n) =L (Pos_l(m, n)) ,

i.e. p;(m,n) is the value in L of the word addressing position (m,n). Picture languages picture(L)
that are defined by a word language L we call iterative.

A W-valued word language L : Ay — W is recognizable if there is a W-weighted automaton
(WFA) A such that L is the behavior of A. If the semiring W is locally finite (i.e. every finitely
generated subsemiring of W is finite) then for every W-recognizable word language L : A2 — W,
all pictures in picture(L) have colors from a finite subset of W.

Recognizability of picture languages over a finite set of colors is defined by tiling systems [5]
and coincides with recognizability of picture languages by several other computational devices
(nondeterministic 4-way-automata, on-line tessellation automata) and definability in existential
monadic second order logic.

Our main result is the following theorem:

Theorem 1. For every locally finite semiring W and every W -recognizable word language L :
A? — W, the picture language picture(L) is recognizable.

This is proven by a connection to two-dimensional Lindenmayer systems [8], for which recogniz-
ability of the generated picture languages was shown in [9].

Using a result in [7], we present a non-recognizable word language L such that the picture
language picture(L) is recognizable. Hence the recognizability of picture(L) does not imply the
recognizability of the word language L.

The RGB model [3] is a standard color format for digital images. Every color is represented
by a triple (r,g,b) (intensities of colors red, green, blue). The set of all colors in the RGB model
forms a locally finite MV-algebra [2] with operations defined in [10]. Hence by [4] this algebra has
semiring a reduct (with the operations of pointwise maximum and truncated addition) that can
serve as weight semiring for weighted automata. By our theorem, the set of all pictures generated
by a WFA-encoding [11] of an RGB image is a recognizable picture language.
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Weighted multioperator tree automata (for short: wmta) were introduced in [16]; they are finite-
state bottom-up weighted tree automata in which the transition weights are finite sums of poly-
nomials over variables, operations, and constants. The operations are taken from a multiopera-
tor monoid (for short: M-monoid) [15,16], which is an algebraic structure (4, +,0, §2) such that
(A,+,0) is a commutative monoid and (A, £2) is an (2-algebra. If the operations in {2 distribute
over + and + is idempotent, then an M-monoid is called distributive {2-magma in [4].

Here we consider a simplified version of wmta (henceforth also called wmta) in which the
transition weights are operations taken from (2 (rather than finite sums of polynomials over (2).
More precisely, given a wmta M, the weight of the transition at some k-ary input symbol o with
some state behaviour (q1---gk,q) is a k-ary operation w € §2; let us denote this operation by
1k(0) gy -qu.q- Then, for every run r of M on some input tree ¢ € T, and every position w of ¢, the
weight of r on ¢ at w, denoted by [r]ar,(w) € A, is obtained by applying the operation (g () g, -gx.q
to the k elements [r]a¢(w.1),...,[r]am,:(w.k) € A where o is the label of ¢ at w and (g1 - - gk, q)
is the state behaviour at w prescribed by 7. All in all, M recognizes the tree series [M] € A{(Ts))
defined for every ¢ € T such that ([M],t) is the sum of the values [r]as () taken over all runs r
on t. We denote the class of all wmta recognizable tree series over A by BOT(A).

Wmta have been investigated in [18,20] where it was shown that they can easily simulate
weighted tree automata over semirings [1, 3,14, 8, 5] and tree series transducers over semirings [17,
7,11,9,19,21] (for surveys on weighted tree automata and tree series transducers cf. [8,12]). In
[10] it was proved that the wmta recognizable tree series over some M-monoid A are exactly the
rational tree series over A.

In this paper we prove three main results. The first main result is the following characterization
of BOT(A):

BOT(A) = REL; FTA; HOM (A)

where REL and F'T A are the classes of relabeling tree transformations and fta tree transformations,
respectively (as defined in [6]); an fta tree transformation is a partial identity on a recognizable tree
language; HOM (A) is the class of all tree series which are recognizable by homomorphism wmta
over A, where a homomorphism wmta is a wmta with exactly one state which is also final; the
semicolon in the right hand side expression denotes the usual composition of relations. This result
generalizes the decomposition of generalized sequential machine mappings [22] (also cf. Theorem 4.1
of [2]) and of bottom-up tree transducers (cf. Theorem 3.5 of [6]).

The second main result of this paper is derived from the first one. It shows the following
characterization of the class p-BOT(S) of tree series transformations computed by polynomial
bottom-up tree series transducers (for short: polynomial bottom-up tst) over some semiring S:

p-BOT(S) = REL; FTA; HOM(S)

where HOM (S) is the class of tree series transformations computed by bottom-up homomorphism
tst; a tree series transformation over S is a mapping ¢ : Ty — S{Ta)). Polynomial bottom-up
tst were investigated in, e.g., [7,21,12]. We note that a similar characterization has been proved

* The work of this author was partially supported by Deutsche Forschungsgemeinschaft, project DFG VO
1011/4-1.
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in Theorem 5.7 of [7]: p-BOT(S) = QREL(S);b-HOM(S), where QREL(S) and b-HOM (S)
denote the classes of tree series transformations computed by bottom-up finite state relabeling tst
and by Boolean bottom-up homomomorphism tst, respectively. The difference between these two
characterizations is the fact that in REL; FT A; HOM (S) the classes REL and FT A contain tree
transformations, i.e., mappings of the type T; — P(Ta), and the weights only occur in the third
class (viz. HOM (S)); in contrast to this, in QREL(S); b-HOM (S) the semiring values are solely
computed by QRFEL(S) and the Boolean-valued bottom-up homomomorphism tst only produces
the values 0 or 1. This organization of weights in QREL(S);b-HOM(S) forced the combination
of the relabeling and the state checking which were originally separated. Also we note that, for
the Boolean semiring, our second main result is exactly the characterization of BOT proved in
Theorem 3.5 of [6].

The third main result of our paper is also derived from the first one, and it shows a characteri-
zation of the class Rec(X, S) of tree series which are recognizable by weighted tree automata over
some semiring S:

Rec(X,S) = PROJ(X,S)(ZLLoc),
where Zoc is the class of local tree languages (cf. Section 8 of [13]), and PROJ(X,S) is the
class of tree series transformations which are computed by bottom-up projection tst. We note

that, for the Boolean semiring, our third main result is exactly the well-known characterization of
recognizable tree languages in terms of projections of local tree languages.
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