
Weighted Automata � Theory and Appli
ationsDresden, Germany, May 13�16, 2008edited by Manfred Droste and Heiko VoglerPrefa
eThis report 
ontains the programme and the abstra
ts of le
tures delivered at the workshop�Weighted Automata � Theory and Appli
ations� whi
h took pla
e at Te
hnis
he UniversitätDresden, May 13�16, 2008. This workshop 
overed all aspe
ts of weighted automata, ranging fromthe theory of formal power series to appli
ations of tree automata, natural language pro
essing,and multi-valued logi
s. The workshop was attended by 43 parti
ipants from 12 
ountries.Two tutorials were given byZ. Ésik (Szeged, Hungary and Tarragona, Spain)K. Knight (Los Angeles, USA)In addition, seven survey le
tures were presented byF. Drewes (Umeå, Sweden) S. Gaubert (Ro
quen
ourt, Fran
e)B. Gerla (Varese, Italy) W. Kui
h (Vienna, Austria)A. Maletti (Berkeley, USA) W. Martens (Dortmund, Germany)G. Rahonis (Thessaloniki, Gree
e)Furthermore, 17 talks were sele
ted as te
hni
al 
ontributions.The workshop was organized jointly by the Chair for Automata and Formal Languages of LeipzigUniversity and the Chair for Foundations of Programming of Te
hnis
he Universität Dresden.For further �nan
ial support we would like to thank the a
tivity �Gesells
haft von Freunden undFörderern der TU Dresden� and the �International Center for Computational Logi
�.Call for PapersThe journal A
ta Cyberneti
a has agreed to publish a spe
ial issue on this topi
. Submissions re-lated to this topi
 
ould be either survey arti
les or resear
h papers and will be refereed as usual.Parti
ipation in the above workshop is en
ouraged, but is not a prerequisite for a submission.Authors are asked to submit their 
ontribution preferably in PostS
ript or PDF to both of theeditors of the spe
ial issue. Please send your �les todroste�informatik.uni-leipzig.de and vogler�inf.tu-dresden.de .Deadline for submissions is July 11, 2008. We intend to ensure a qui
k refereeing pro
ess. Authorsof published papers will be provided with 50 reprints free of 
harge.Manfred Droste and Heiko Vogler
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Tuesday, May 13, 200808:30�09:00 Registration09:00�10:30 K. Knight TutorialAn overview of weighted automata in natural language pro
essing (I)10:30�11:00 Break11:00�12:00 W. Kui
h Survey Le
tureWhy we need semirings in automata theory12:00�13:30 Lun
h13:30�14:30 F. Drewes Survey Le
tureLearning: from string languages to tree series14:35�15:00 F. Denis, A. Habrard, R. Gilleron, Te
hni
al ContributionM. Tommasi, É. GilbertOn probability distributions for trees: representations, inferen
e and learning15:00�15:30 Break15:30�15:55 A. E
kl Te
hni
al ContributionPredi
tion of subalphabets and ranking in DAWG's for natural languages15:55�16:20 T. Hanneforth, K.-M. Würzner Te
hni
al ContributionStatisti
al language models within the algebra of weighted rational languages16:20�16:45 Break16:45�17:10 K. Quaas, M. Droste Te
hni
al ContributionA Kleene-S
hützenberger theorem for weighted timed automata17:10�17:35 D. Kirsten, S. Lombardy Te
hni
al ContributionDe
iding unambiguity and sequentiality from a polynomially ambiguousmin-plus automaton
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Wednesday, May 14, 200808:30�09:00 Registration09:00�10:30 K. Knight TutorialAn overview of weighted automata in natural language pro
essing (II)10:30�11:00 Break11:00�12:00 W. Martens Survey Le
tureXML resear
h for formal language theorists12:00�13:30 Lun
h13:30�14:30 A. Maletti Survey Le
tureMinimization of weighted automata14:35�15:00 E. Mandrali, G. Rahonis Te
hni
al ContributionWeighted tree automata with dis
ounting15:00�15:30 Break15:30�15:55 Z. Fülöp, M. Steinby Te
hni
al ContributionVarieties of re
ognizable tree series over �elds15:55�16:20 Z. Fülöp, L. Muzamel Te
hni
al ContributionWeighted tree-walking automata16:20�16:45 Break16:45�17:10 C. Mathissen Te
hni
al ContributionWeighted logi
s for nested words and algebrai
 formal power series17:10�17:35 T. Stüber, H. Vogler, Z. Fülöp Te
hni
al ContributionDe
omposition of weighted multioperator tree automata
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Thursday, May 15, 200808:30�09:00 Registration09:00�10:30 Z. Ésik TutorialIteration theories as an axiomati
 foundation of automata andlanguage theory (I)10:30�11:00 Break11:00�12:00 B. Gerla Survey Le
tureMany-valued logi
 and fuzzy automata12:00�13:30 Lun
h13:30�14:30 G. Rahonis Survey Le
tureMulti-valued automata: theory and appli
ations14:35�15:00 I. Meine
ke Te
hni
al ContributionOn the expressive power of a weighted µ-
al
ulus15:00�15:30 Break15:30�15:55 M. �iri¢, A. Stamenkovi¢, Te
hni
al ContributionJ. Ignjatovi¢, T. Petkovi¢State redu
tion of fuzzy automata15:55�16:20 J. Ignjatovi¢, M. �iri¢, T. Petkovi¢ Te
hni
al ContributionRelationships between FFA-re
ognizability and DFA-re
ognizabilityof fuzzy languages16:20�16:45 Break16:45�18:00 Workshop19:00�open Conferen
e Dinner
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Friday, May 16, 200808:30�09:00 Registration09:00�10:30 Z. Ésik TutorialIteration theories as an axiomati
 foundation of automata andlanguage theory (II)10:30�11:00 Break11:00�12:00 S. Gaubert Survey Le
tureTo be announ
ed12:00�13:30 Lun
h13:30�13:55 V. Halava, T. Harju, E. Lehtonen Te
hni
al ContributionA survey of integer weighted �nite automata13:55�14:20 D. Kuske Te
hni
al ContributionFrom unweighted to weighted tra
es � alternative proofs14:20�14:45 S. S
hwarz, R. Winter Te
hni
al ContributionRe
ognizability of iterative pi
ture languages14:45�15:15 Break15:15�15:40 A. Koprowski, J. Waldmann Te
hni
al ContributionMax/Plus tree automata for termination of term rewriting15:40�16:05 A. Gebhardt, J. Waldmann Te
hni
al ContributionWeighted automata de�ne a hierar
hy of terminating stringrewriting systems16:05�16:15 Break16:15�open Joint Resear
h
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Part IIAbstra
ts





Tutorials





Iteration Theories as an Axiomati
 Foundationof Automata and Language TheoryZoltán ÉsikDept. of Computer S
ien
e, University of SzegedGRLMC, Rovira i Virgily UniversityFixed points and �xed point 
omputations o

ur in just about every �eld of Computer S
ien
e.They are often used to give semanti
s to re
ursion, in automata and language theory, programminglanguages and abstra
t data types, 
on
urren
y and logi
, to mention only a few appli
ations. Forone familiar example, one 
an 
anoni
ally asso
iate with ea
h 
ontext free grammar a ve
tor valuedfun
tion over the domain of all subsets of the free monoid over the set of terminals, so that thelanguage generated by the grammar be
omes a 
omponent of the least �xed point of the fun
tion.Typi
al questions about �xed points are: when do �xed points exist, and what are their proper-ties. There are several �xed point theorems that have found appli
ations in Computer S
ien
e, ea
hguaranteeing the existen
e of 
ertain 
anoni
al �xed points under 
ertain 
onditions. Examples ofsu
h �xed point theorems are Tarski's �xed point theorem and several of its variants, involving
omplete latti
es or 
po's and monotone or 
ontinuous fun
tions, 
ategori
al generalizations ofthese theorems, Bana
h's �xed point theorem involving proper 
ontra
tions over 
omplete metri
spa
es, et
. Regarding the properties of the �xed point operations, it has been shown that all�xed point operations share the same equational laws. Letting these equational laws the axioms,together with some axioms spe
ial to a dis
ipline su
h as languages, 
on
urren
y, we obtain anaxiomati
 basis for that dis
ipline. It is then interesting to know how far one 
an get with theaxiomati
 approa
h.The use of equations has several advantages. Proofs 
an be separated into two parts, wherethe �rst part establishes the equational axioms, and the se
ond is based on simple equationalreasoning. Su
h proofs have a transparent stru
ture and are usually very easy to understand, sin
emanipulating equations is one of the most 
ommon way of mathemati
al reasoning. Moreover,sin
e many results depend on the same equations, the �rst part of su
h proofs usually provides abasis to several results. Finally, the results obtained by equational reasoning have a mu
h broaders
ope, sin
e many models share the same equations.The aim of this tutorial is to provide an introdu
tion to that part of the theory of �xed pointsthat has appli
ations to weighted automata. We start with a treatment of �xed points in theordered setting and review some basi
 theorems guaranteeing the existen
e of least (or greatest)�xed points. Then we establish several (equational) properties of the least �xed point operationin
luding the Beki¢ identity, asserting that systems of �xed point equations 
an be solved bythe te
hnique of su

essive elimination. Then we use the Beki¢ identity and some other basi
laws to introdu
e the axiomati
 frameworks of Conway and iteration theories. We provide severalaxiomatizations of these notions and show that iteration theories 
apture the equational propertiesof the �xed point operation in a large 
lass of models.We also treat �xed points of linear fun
tions over semirings and semimodules. The main resultsshow that for su
h fun
tions, the �xed point operation 
an be 
hara
terized by a star operation,possibly in 
onjun
tion with an omega operation. We show that the equational properties of the�xed point operation are re�e
ted by 
orresponding properties of the star and omega operations.As a main appli
ation of the theory of �xed points, we will show that Kleene's theorem, be it for-mulated for 
lassi
al automata, weighted automata, or weighted tree automata, or Bu
hi automata,rests on the same axiomati
s. As a se
ond main appli
ation, we will 
over the axiomatization ofthe algebra of regular languages and rational power series.
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An Overview of Weighted Automatain Natural Language Pro
essingKevin KnightInformation S
ien
es Institute and Computer S
ien
e DepartmentUniversity of Southern Californiaknight�isi.eduNatural Language Pro
essing ta
kles a number of pra
ti
al problems, e.g.:
• automated language translation (e.g., Chinese to English)
• spee
h re
ognition
• information retrieval
• question answering
• grammar 
he
king
• spee
h synthesis
• automati
 summarizationet
.These problems are not solved with 
on
ise algorithms alone�rather, solutions must be poweredby tremendous amounts of formalized knowledge about words, pronun
iations, syntax, semanti
s,and the world.Weighted automata form an elegant and satisfying way to represent su
h knowledge. Further-more, learning algorithms asso
iated with weighted automata permit us to obtain large amountsof linguisti
 knowledge automati
ally from online text and spee
h 
orpora.This tutorial will 
over the use of weighted automata a
ross many problems in natural languagepro
essing. We will also illustrate, in depth, major issues in automated language translation, a
hallenging problem that requires both analysis of sour
e-language senten
es and generation ofnew, grammati
al target-language senten
es that have never been uttered before.We will also tra
k histori
al developments in both automata theory and natural language pro-
essing. These two �elds were tightly knit in the middle of the 20th 
entury, but over time theydrifted apart, with neither theory nor pra
ti
e signi�
antly informing one another. Finite-statemethods returned to make a dramati
 impa
t on natural language in the 1990s, when they were
oupled with automati
 knowledge a
quisition methods. In this 
entury, tree automata have re-
eived renewed interest, being able to 
apture linguisti
 transformations (su
h as observed innatural language translation data) that pose di�
ulties for string-based automata.Finally, we will examine a wide variety of automata models from the point of view of what isneeded in 
ontemporary pra
ti
al natural language systems. We �nd very good synergy�many au-tomata theorems �nd wonderful appli
ation in language systems (greatly simplifying their design),while demands of pra
ti
al systems raise 
hallenging questions for the theory side.
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Survey Le
tures





Learning: from String Languages to Tree SeriesFrank DrewesDepartment of Computing S
ien
e, Umeå UniversityS-901 87 Swedendrewes�
s.umu.seAbstra
t. The talk gives an overview on algorithmi
 learning, fo
using on the �eld ofgrammati
al inferen
e. After a very brief overview on algorithmi
 learning in general, someof the major models and approa
hes used in grammati
al inferen
e of string languages areexplained. Finally, grammati
al inferen
e of tree languages and tree series is dis
ussed.1 Algorithmi
 LearningUnsurprisingly, algorithmi
 learning is about algorithms that �learn�. However, what does thismean? Usually, resear
h in this �eld fo
uses on algorithms that (a) adjust, and thus improve,their behaviour over time or (b) use limited information (su
h as training samples) to, eventually,
orre
tly re
ognize a general 
on
ept or 
ompute a fun
tion. In fa
t, this is merely a matter ofperspe
tive. For example, the bottom line of learning to avoid mistakes is to learn the 
on
eptmistake. Conversely, an algorithm that learns a fun
tion f from argument-value pairs 
an be seenas an algorithm that improves its behaviour when being asked for the value of f(x). Furthermore,it is 
lear that 
on
ept learning (e.g., learning the 
on
ept `prime number' or `pi
ture of an apple')is a spe
ial 
ase of fun
tion learning, namely of learning the 
hara
teristi
 fun
tion of the 
on
ept.Several areas in Computer S
ien
e study aspe
ts of algorithmi
 learning:(1) Ma
hine Learning studies learning from the point of view and using the methods of Arti�
ialIntelligen
e.(2) Pattern Re
ognition is algorithmi
 learning whenever it is 
on
erned with dis
overing generalpatterns in input data.(3) Indu
tive Inferen
e, an area founded by Solomono� in the years around 1960 [14℄, fo
uses onlearning a 
on
ept or fun
tion, usually from observations (i.e., examples). Often, statisti
almethods are used, and 
orre
tness means 
orre
tness with a high degree of probability. See [3℄for a survey.(4) Grammati
al Inferen
e addresses the problem of learning formal languages, with the additionalrequirement that the algorithm shall produ
e an expli
it grammati
al or automata-theoreti
representation of the target language. See [7, 10℄ to obtain an initial overview of the �eld.Obviously, these areas are not disjoint from ea
h other. To some extent, one may see the list aboveas a series of spe
ializations, i.e., (1) ⊇ (2) ⊇ (3) ⊇ (4).Resear
h in the �eld of algorithmi
 learning may or may not belong to theoreti
al 
omputers
ien
e. The part that does, de�nes the area of Computational Learning Theory (COLT). AsAngluin puts it in her survey [2℄, the goal of COLT is to �give a rigourous, 
omputationally detailedand plausible a

ount of how learning 
an be done.� See also the book by Kearns and Vazirani[11℄.2 Grammati
al Inferen
e of String LanguagesAs mentioned, the purpose of a grammati
al inferen
e algorithm (
alled a learner in the following) isto learn a target language L ⊆ Σ∗ by 
onstru
ting an appropriate grammar or automaton. Whetherthis is possible depends not only on the 
lass of languages 
onsidered, but also on the learningmodel: whi
h kind of information is available to the learner, how does it get this information, andwhat the 
riteria of su

ess? Some of the best-known settings are the following.15



Learning from Examples and Identi�
ation in the Limit Gold [8℄ de�nes two of the most naturalsettings for grammati
al inferen
e: learning from text, where the learner is given an exhaustivesequen
e of positive examples u1, u2, . . . , i.e., L = {u1, u2, . . . }, and learning from an informant,where the sequen
e 
ontains both positive and negative examples (u1, b1), (u2, b2), . . . , i.e., {(ui, bi) |
i ∈ N} = L × {1} ∪ L × {0}. Furthermore, Gold proposes a 
riterion of su

ess: After ea
h pie
eof information re
eived, the learner answers with a new hypothesis hi, being an automaton or agrammar 
onsistent with the information seen so far. L is identi�ed in the limit if, for some i ∈ N,
hi = hi+1 = · · · and L(hi) = L.Probably Approximately Corre
t Learning In Valiant's PAC learning [15℄, su

ess is de�ned in astatisti
al manner. The learner is given additional parameters δ, ǫ (0 < δ, ǫ < 1), and is thenprovided with examples drawn a

ording to an unknown probability distribution D. Eventually,it returns the automaton A learned. The error probability of A is err(A) = Prob[u ∈ L△L(A) |
u ∈ Σ∗ drawn a

ording to D] (where △ denotes symmetri
 di�eren
e). Now, the 
orre
tness re-quirement is that err(A) ≤ ǫ (approximate 
orre
tness) with probability at least δ (i.e, probably).Query learning Angluin [1℄ invented query (or a
tive) learning, where the learner 
an ask an ora
le,the tea
her, 
ertain types of queries. The most popular tea
her of this sort is the so-
alled minimaladequate tea
her (MAT). Given that A is the 
lass of automata of interest, the learner 
an askmembership queries : �Does w belong to the target language?� and equivalen
e queries : �Does A ∈ Arepresent the target language L? If not, give me a 
ounterexample w ∈ L(A)△L.� Angluin's L∗learner learns any regular language in polynomial time from a MAT, using a modi�ed version ofGold's observation table.3 Inferen
e of Tree LanguagesResults on regular languages 
an usually be generalised to regular tree languages, and this istrue even for inferen
e algorithms. For instan
e, the notions of k-reversibility, k-testability, andfun
tion distinguishability mentioned above 
an be generalised to regular tree languages, and implye�
ient learnability from text. The same holds for Angluin's L∗ learner [13, 5℄. Results like theseare parti
ularly interesting in view of the negative results regarding the learnability of 
ontext-freelanguages, as they show that 
ontext-free languages 
an be learned if stru
tural information aboutthe strings in the language is available.Let us brie�y des
ribe the idea behind the L∗ learner for the tree 
ase. As usual, a 
ontext is atree c with a unique o

urren
e of a variable x, and c · t denotes the tree obtained by substituting
x in c with a tree t. For a (regular) target language L, de�ne the Myhill-Nerode 
ongruen
e ≡Lon TΣ by s ≡L t i� c · s ∈ L ⇐⇒ c · t ∈ L for all 
ontexts c. It is well known that the index of ≡L(i.e., the number of equivalen
e 
lasses) is �nite i� L is regular, and that the 
orresponding uniqueminimal deterministi
 bottom-up tree automaton AL is obtained by using the 
ongruen
e 
lassesas states.Now, let T be the in�nite table given as follows. The rows (
olumns) are indexed by trees t(
ontexts c, resp.), and entry T (t, c) is 1 if c · t ∈ L and 0 otherwise. By de�nition, s ≡L t i� therows of s and t are equal. Thus, a �nite subtable of T su�
es to de�ne AL, be
ause there areonly �nitely many pairwise distin
t rows and 
olumns. Starting with the empty table T0, the L∗learner builds su
h a �nite subtable Tn of T . It repeatedly 
onstru
ts the automaton Ai given bythe 
urrent table Ti to ask an equivalen
e query. If L(Ai) 6= L, the 
ounterexample re
eived 
an beused to extend the table by new rows and 
olumns, yielding Ai+1. Membership queries are mainlyneeded to �ll in new 
ells of the table. At most index(L) loop exe
ution are needed to dis
over AL.4 Inferen
e of Tree SeriesA natural next step is to extend grammati
al inferen
e algorithms to the 
ase of tree series ψ : TΣ →
S, for some semiring S. The number of papers addressing this problem is still rather small. One16



may roughly divide them into two 
ategories. The �rst deals with the spe
ial 
ase of sto
hasti
 treelanguages, i.e., where S is the �eld R, (ψ, t) ∈ [0, 1] for all t ∈ TΣ, and ∑

t∈TΣ
(ψ, t) = 1. Sto
hasti
languages have re
eived parti
ular interest in natural language pro
essing. When dealing with thelearnability of sto
hasti
 tree languages, it is probably most natural to 
onsider a learning-from-text-like setting: positive examples are drawn a

ording to a probability distribution D, and thegoal is to learn D in the limit by, e.g., 
onstru
ting a weighted tree automaton (wta). For the 
asewhere ψ is re
ognisable, Denis and Habrard have re
ently presented su
h a learner [4℄.The se
ond 
ategory of learners works on tree series that are not restri
ted to sto
hasti
 ones.There seem to be only two results of this kind, both using Angluin's MAT model and her generalalgorithmi
 idea based on an observation table. For this, membership queries are generalised to
oe�
ient queries : given a tree t ∈ TΣ , the tea
her replies with (ψ, t). Of 
ourse, equivalen
e querieshave to be extended to the type of wta 
onsidered. The entries of the observation table are now thevalues (ψ, c·t). One of the learners, proposed by Drewes and Vogler and improved by Maletti [6, 12℄,learns a deterministi
ally re
ognisable tree series ψ over a 
ommutative semi�eld by 
onstru
tingthe 
orresponding minimal deterministi
 wta. The se
ond learner, proposed by Habrard and On
ina[9℄ learns a re
ognisable tree series ψ over a �eld, by 
onstru
ting the 
orresponding minimalnondeterministi
 wta. Note that a �eld is assumed, whi
h explains why nondeterministi
 devi
es
an be learned by Angluin's method, whereas nothing similar has yet been a
hieved for the Boolean
ase, where no appropriate �nite algebrai
 
hara
terization is known.Referen
es1. Dana Angluin. Learning regular sets from queries and 
ounterexamples. Information and Computation,75:87�106, 1987.2. Dana Angluin. Computational learning theory: survey and sele
ted bibliography. In Pro
. 24th AnnualACM Symposium on Theory of Computing (STOC 1992), pages 351�369. ACM Press, 1992.3. Dana Angluin and Carl H. Smith. Indu
tive inferen
e: Theory and methods. ACM Computing Surveys,15:237�269, 1983.4. François Denis and Amaury Habrard. Learning rational sto
hasti
 tree languages. In M. Hutter, R.A.Servedio, and E. Takimoto, editors, Pro
. 18th International Conferen
e on Algorithmi
 LearningTheory (ALT 2007), volume 4754 of Le
ture Notes in Computer S
ien
e, pages 242�256, 2007.5. Frank Drewes and Johanna Högberg. Query learning of regular tree languages: How to avoid deadstates. Theory of Computing Systems, 40:163�185, 2007.6. Frank Drewes and Heiko Vogler. Learning deterministi
ally re
ognizable tree series. Journal of Au-tomata, Languages and Combinatori
s, 2008. To appear.7. Henning Fernau and Colin de la Higuera. Grammar indu
tion: An invitation for formal languagetheorists. Formal Grammars, 7:45�55, 2004.8. E. Mark Gold. Language identi�
ation in the limit. Information and Control, 10:447�474, 1967.9. Amaury Habrard and José On
ina. Learning multipli
ity tree automata. In Y. Sakakibara,S. Kobayashi, K. Sato, T. Nishino, and E. Tomita, editors, Pro
. 8th International Colloquium onGrammati
al Inferen
e: Algorithms and Appli
ations (ICGI 2006), volume 4201 of Le
ture Notes inComputer S
ien
e, pages 268�280, 2006.10. Colin de la Higuera. A bibliographi
al study of grammati
al inferen
e. Pattern Re
ognition, 38:1332�1348, 2005.11. Mi
hael J. Kearns and Umesh V. Vazirani. An Introdu
tion to Computational Learning Theory. MITPress, 1994.12. Andreas Maletti. Learning deterministi
ally re
ognizable tree series � revisited. In S. Bozapalidis andG. Rahonis, editors, Pro
. 2nd International Conferen
e on Algebrai
 Informati
s (CAI 2007), volume4728 of Le
ture Notes in Computer S
ien
e, pages 218�235, 2007.13. Yasubumi Sakakibara. Learning 
ontext-free grammars from stru
tural data in polynomial time. The-oreti
al Computer S
ien
e, 76:223�242, 1990.14. Ray Solomono�. A formal theory of indu
tive inferen
e, parts I and II. Information and Control,7:1�22 and 224�254, 1964.15. Leslie G. Valiant. A theory of the learnable. Communi
ations of the ACM, 27:1134�1142, 1984.17



Many-valued logi
 and fuzzy automataBrunella GerlaDept. Informati
s and Communi
ations, University of Insubria21100 Varese, Italybrunella.gerla�uninsubria.itIn the last de
ades, the interest in fuzzy sets and fuzzy logi
 has grown from di�erent points ofview. From one side, many engineering appli
ations have been proposed based on the use of fuzzysets as a tool to solve non-linear phenomena through a linguisti
 representation. From another side,fuzzy sets have motivated a renewed interest in truth-fun
tional logi
s with an enlarged set of truthvalues. Indeed a deep study of su
h logi
s has being portrayed in the last years and many-valuedlogi
 has been proposed to model phenomena in whi
h un
ertainty and vagueness are involved.Very general 
lasses of many-valued propositional logi
s are the Basi
 logi
 de�ned in [8℄ asthe logi
 of 
ontinuous t-norms and the MTL logi
 de�ned in [7℄ as the logi
 of left-
ontinuoust-norm. We shall give a few details on su
h stru
tures. Spe
ial 
ases of propositional many-valuedlogi
s are �ukasiewi
z, Gödel and Produ
t logi
. In parti
ular �ukasiewi
z logi
 has been deeplyinvestigated, together with its algebrai
 
ounterpart, MV-algebras, introdu
ed by Chang in [1℄to prove 
ompleteness theorem of �ukasiewi
z logi
. MV-algebras 
an be thought of as a spe
ialgeneralization of Boolean algebras in whi
h the idempoten
y of 
onjun
tion and the ex
ludedmiddle low are not valid.MV-algebras have ni
e algebrai
 properties and 
an be 
onsidered as intervals of latti
e-orderedgroups. �ukasiewi
z disjun
tion and 
onjun
tion are interpreted by the operations ⊕ and ⊙ of theMV-algebra [0, 1] given by
x⊕ y = min{1, x+ y}, x⊙ y = max{0, x+ y − 1}.In spite of satisfying theoreti
al results regarding �ukasiewi
z logi
, all the attempts to use it asan instrument to deal with un
ertainty phenomena, for example in the fuzzy 
ontext, had to dealwith one of its main 
hara
teristi
: 
onjun
tion and disjun
tion do not distribute one with respe
tto the other. This makes di�
ult to use it as a generalization of Boolean logi
.We stress that operations ⊙ and ⊕ in any MV-algebra A both are related to the same operationin the latti
e ordered group asso
iated with A. In order to model the notion of 
onjun
tion anddisjun
tion one have instead to 
onsider a latti
e operation ∧ (or dually, ∨) together with theMV-algebrai
 operation ⊕ (or dually ⊙). MV-algebras have many semiring redu
ts, as for examplethose given by 
onsidering operations ⊙,∨ or operations ⊕,∧ or even ∧,∨.MV-algebras operations have symmetri
 properties, sin
e the negation in an MV-algebra A isa
tually an isomorphism of the monoid (A,⊙, 1) onto (A,⊕, 0) (indeed MV-algebras are De Morganalgebras). In general, other stru
tures related with other many-valued logi
s do not have su
h asymmetry. Nevertheless, ea
h of these stru
tures has a semiring redu
t.In [2℄ we suggested to 
onsider the pairs of 
onne
tives forming the semiring redu
ts of MV-algebras in order to handle the mathemati
s behind many fuzzy systems. This approa
h has beenthen extended to a generalization of linear algebra to a fuzzy 
ontext in [3℄.In order to show in whi
h way this representation 
an be useful to model fuzzy phenomena wegive examples in the �eld of automata following the approa
h of [6℄, where semirings have beenproposed to give a generalization of automata, the so 
alled K-Σ- automata.

K-Σ- automata 
an be 
onsider as fuzzy automata, in the sense that are non-deterministi
automata in whi
h every transition from one state to another happens with some degree. Then ea
hword is re
ognized with a degree that must be 
omputed by the degrees of the single transitions,hen
e ea
h fuzzy automaton a

epts a fuzzy language, that is a fuzzy subset of the set of all �nitewords over a given alphabet.More re
ently, automata with values in semirings over the natural numbers or the real numberssets have been deeply investigated both to �nding results on nondeterminism or in�nite behavior of18



�nite automata, in the 
ontext of formal power series and of weighted automata (see [4℄,[5℄,[9℄, [10℄).We shall give a des
ription of automata having values in semirings asso
iated with BL-algebrasand MV-algebras.Referen
es1. C.C. Chang. Algebrai
 analysis of many valued logi
s. Trans. Amer. Math. So
., 88:467�490, 1958.2. A. Di Nola and B. Gerla. Algebras of �ukasiewi
z's logi
 and their semiring redu
ts. Journal of Algebraand its Appli
ations, 5:417�439, 2006.3. A. Di Nola, A. Lettieri, I. Per�lieva and V. Novák. Algebrai
 analysis of fuzzy systems, Fuzzy Sets andSystems, 158:1-22, 2007.4. M. Droste, P. Gastin. Wighted Automata and Wieghted Logi
s. Theoreti
al Computer S
ien
e, 380:513�525, 2007.5. M. Droste, W. Krui
h, G. Rahonis. Multi-valued MSO logi
s over words and trees Fundamenta Infor-mati
ae, 2008, to appear.6. S. Eilenberg. Automata, Languages, and Ma
hines. A
ademi
 Press, 1974.7. Esteva, F., Godo, L.: Monoidal t-norm based logi
: towards a logi
 for left-
ontinuous t-norms. FuzzySets ans Systems. 124:271�288, 2001.8. P. Hájek, Metamathemati
s of fuzzy logi
. Dordre
ht: Kluwer A
ademi
 Publishers, 1998.9. D. Krob. Some automata-theoreti
 aspe
ts of min-max-plus semirings. In J. Gunawardena, editor.Idempoten
y Analysis. Cambridge University Press, 1998.10. I. Simon. Re
ognizable sets with multipli
ities in the tropi
al semiring. In M.P.Chytil et al., editor,Le
t. Notes in Comput. S
i., number 324, pages 107�120, 1988.
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Why we need semirings in automata theoryWerner Kui
hTe
hnis
he Universität Wienkui
h�tuwien.a
.atThe use of semirings, formal power series, matri
es and �xed point theory in formal languageand automata theory yields the following advantages:(i) The 
onstru
tions needed in the proofs are mainly the usual ones.(ii) The des
riptions of the 
onstru
tions by formal series and matri
es do not need as mu
hindexing as the usual des
riptions.(iii) The proofs are separated from the 
onstru
tions and do not need the intuitive 
ontents of the
onstru
tions. Often they are shorter than the usual proofs.(iv) The results are more general than the usual ones. Depending on the semiring used, the re-sults are valid for 
lassi
al grammars and automata, 
lassi
al grammars and automata withambiguity 
onsiderations, probabilisti
 grammars or automata, et
.(v) The use of formal power series and matri
es gives insight into the mathemati
al stru
ture ofproblems and yields new results and solutions to unsolved problems that are di�
ult, if notimpossible, to obtain by other means.In our le
ture we give examples that illustrate these advantages.
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Minimization of Weighted AutomataAndreas Maletti⋆International Computer S
ien
e InstituteBerkeley, CA 94704, USAmaletti�i
si.berkeley.eduWeighted automata are used in a variety of appli
ations (e.g., natural language pro
essing,probabilisti
 model 
he
king, et
). We will review minimization algorithms for weighted automatawith a strong emphasis on tree automata. In addition, partial but e�
ient minimization pro
eduressu
h as bisimulation minimization are 
onsidered. Spe
ial attention will be given to the runtime
omplexity of the algorithms and whenever available we will substantiate the results with pra
ti
alexperien
e gained from implementations.

⋆ Author on leave from Te
hnis
he Universität Dresden, Fa
ulty of Computer S
ien
e, 01062 Dresden,Germany, with the help of �nan
ial support by a DAAD (German A
ademi
 Ex
hange Servi
e) grant.21



XML Resear
h for Formal Language TheoristsWim MartensTe
hni
al University of Dortmundwim.martens�udo.eduFormal Language Theory plays a dominant role in XML resear
h. The design of the predominantXML s
hema languages is based on 
ontext-free grammars and tree automata, and widely usednavigation and transformation languages su
h as XPath and XSLT are 
losely tied to regularexpressions and tree transdu
ers. The investigation of these s
hema and query languages thereforesigni�
antly bene�ts from the large 
orpus of results in Formal Language Theory.Conversely, XML resear
h is also a motivation and a sour
e of inspiration for Formal LanguageTheory. Stati
 analysis questions in XML resear
h, for instan
e, motivate the deeper study ofproblems su
h as membership testing, 
ontainment, equivalen
e, and minimization for variousforms of regular expressions and �nite automata.I will give an overview of this synergy between XML resear
h and Formal Language Theory.
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Multi-valued automata: theory and appli
ationsGeorge RahonisDepartment of Mathemati
s, Aristotle University of Thessaloniki54124 Thessaloniki, Gree
egrahonis�math.auth.grWe presentmulti-valued automata over bounded distributive latti
es a
ting on �nite words. They
onstitute a spe
ial sub
lass of weighted automata over arbitrary semirings, and they have ni
eproperties due to the latti
e operations. For instan
e for every multi-valued automaton we 
an e�e
-tively 
onstru
t an equivalent deterministi
 one, whi
h moreover 
an be minimized. Furthermore,the equivalen
e problem is de
idable for the behaviors of multi-valued automata. If the underlyinglatti
e has a negation fun
tion, then we 
an show the expressive equivalen
e of multi-valued au-tomata with multi-valued monadi
 se
ond order senten
es (
f. [1℄ for a more general treatment).Usual fuzzy automata over the interval [0, 1] is a great paradigm of multi-valued automata.We deal also with multi-valued Bü
hi and Muller automata investigated in [2℄. By extendinga well-known result for 
lassi
al automata on in�nite words, we prove that the families of thebehaviors of the two models 
oin
ide. We show the expressive equivalen
e of our automata withmulti-valued monadi
 se
ond order senten
es provided that the underlying latti
e has a negationmapping. Then, we 
ompare our models with the Bü
hi latti
e automata of Kupferman and Lustig[3℄. A sub
lass of Bü
hi latti
e automata, whi
h in fa
t 
oin
ides with our multi-valued Bü
hiautomata over De Morgan algebras, is related to latti
e linear temporal logi
 whi
h in turn isrelated to important multi-valued model 
he
king appli
ations. We investigate the relation amongthe multi-valued monadi
 se
ond order logi
 and the latti
e linear temporal logi
. On the otherhand, we highlight future resear
h lines motivated by the following fa
t. A 
riti
al point for the(multi-valued) automata-theoreti
 approa
h of (multi-valued) model 
he
king, is the 
omplexitybound for the 
onstru
tions on (multi-valued) automata. For instan
e, we are interested in the
omplexity bound for 
omplementing (multi-valued) automata over in�nite words. It turns out thatseveral 
onstru
tions on our multi-valued Muller automata [2℄ have mu
h lower 
omplexity boundsthan the 
orresponding ones for Bü
hi latti
e automata [3℄. Therefore, it should be interesting toinvestigate the 
ontribution of multi-valued Muller automata to the automata-theoreti
 approa
hof multi-valued model 
he
king.Referen
es1. M. Droste, P. Gastin, Weighted automata and weighted logi
s, Theoret. Comput. S
i. 380(2007) 69-86;extended abstra
t in: Pro
eedings of ICALP 2005, LNCS 3580(2005) 513-525.2. M. Droste, W. Kui
h, G. Rahonis, Multi-valued MSO logi
s over words and trees, Fund. Inform., inpress.3. O. Kupferman, Y. Lustig, Latti
e automata, in: Pro
eedings of VMCAI 2007, LNCS 4349(2007) 199-213.
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State Redu
tion of Fuzzy AutomataMiroslav �iri¢1, Aleksandar Stamenkovi¢1, Jelena Ignjatovi¢1, Tatjana Petkovi¢21Fa
ulty of S
ien
es and Mathemati
s, University of Ni²Vi²egradska 33, 18000 Ni², Serbiajejaign�yahoo.
om, 
iri
m�bankerinter.net2NokiaJoensuunkatu 7, FIN-24100 Salo, Finlandtatjana.petkovi
�nokia.
omIn this talk we will present the results from [1, 2℄ 
on
erning state redu
tion of fuzzy automata. Ithas been shown in [1, 2℄ that the size redu
tion problem for fuzzy automata is related to the problemof solving a parti
ular system of fuzzy relation equations. This system 
onsists of in�nitely manyequations, and �nding its general solution is a very di�
ult task. From that reason we 
onsider
ertain spe
ial 
ases. One of them is a �nite system whose solutions, 
alled right invariant fuzzyequivalen
es, are 
ommon generalizations of right invariant or well-behaved equivalen
es used inredu
tion of non-deterministi
 automata, and 
ongruen
es on fuzzy automata studied in [8℄. Apro
edure for 
onstru
ting the greatest right invariant fuzzy equivalen
e 
ontained in a given fuzzyequivalen
e has been given in [1℄, and it has been shown that the method for redu
tion of fuzzyautomata based on right invariant fuzzy equivalen
es gives better results than all other methodsdeveloped in [3�8℄.In [2℄, an analogue of a right invariant fuzzy equivalen
e, 
alled a left invariant fuzzy equivalen
e,has been 
onsidered. It has been shown that the 
ombination of redu
tion methods based on rightinvariant and left invariant fuzzy equivalen
es 
an give better results than using only one of thesemethods. It has been also proved that using quasi-orders 
an give even better results than usingfuzzy equivalen
es.A
knowledgment. Resear
h supported by Ministry of S
ien
e, Republi
 of Serbia, Grant No.144011Referen
es1. �iri¢, M., Stamenkovi¢, A., Ignjatovi¢, J., Petkovi¢, T.: Fa
torization of fuzzy automata. In: Csuhaj-Varju, E., Ésik, Z. (eds.), FCT 2007. Le
ture Notes in Computer S
ien
e, vol. 4639, pp. 213�225.Springer, Heidelberg (2007)2. �iri¢, M., Stamenkovi¢, A., Ignjatovi¢, J., Petkovi¢, T.: Fuzzy relation equations and redu
tion of fuzzyautomata. submitted for publi
ation3. Basak, N.C., Gupta, A.: On quotient ma
hines of a fuzzy automaton and the minimal ma
hine. FuzzySets and Systems 125, 223�229 (2002)4. Cheng, W., Mo, Z.: Minimization algorithm of fuzzy �nite automata. Fuzzy Sets and Systems 141,439�448 (2004)5. Lei, H., Li, Y.M.: Minimization of states in automata theory based on �nite latti
e-ordered monoids.Information S
ien
es 177, 1413�1421 (2007)6. Malik, D.S., Mordeson, J. N., Sen, M.K.: Minimization of fuzzy �nite automata. Information S
ien
es113, 323�330 (1999)7. Mordeson, J.N., Malik, D.S.: Fuzzy Automata and Languages: Theory and Appli
ations. Chapman &Hall/CRC, Bo
a Raton, London (2002)8. Petkovi¢, T.: Congruen
es and homomorphisms of fuzzy automata. Fuzzy Sets and Systems 157, 444�458 (2006)
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On Probability Distributions for Trees:Representations, Inferen
e and LearningFrançois Denis1, Amaury Habrard1, Rémi Gilleron2,Mar
 Tommasi2, Édouard Gilbert31Laboratoire d'Informatique Fondamentale de Marseille (L.I.F.)UMR CNRS 6166 � http://www.lif.univ-mrs.fr2INRIA Futurs and Lille University, LIFL, Mostrare Proje
thttp://www.grappa.univ-lille3.fr/mostrare3ÉNS de Ca
han, Brittany extensionINRIA Futurs and Lille University, LIFL, Mostrare Proje
tWe study probability distributions over free algebras of trees. Probability distributions 
an beseen as parti
ular (formal power) tree series [2, 7℄, i.e. mappings from trees to a semiring K. Awidely studied 
lass of tree series is the 
lass of rational (or re
ognizable) tree series whi
h 
an bede�ned either in an algebrai
 way or by means of multipli
ity tree automata. We argue that thealgebrai
 representation is very 
onvenient to model probability distributions over a free algebra oftrees. First, as in the string 
ase, the algebrai
 representation allows to design learning algorithmsfor the whole 
lass of probability distributions de�ned by rational tree series. Note that learningalgorithms for rational tree series 
orrespond to learning algorithms for weighted tree automatawhere both the stru
ture and the weights are learned. Se
ond, the algebrai
 representation 
an beeasily extended to deal with unranked trees (like xml trees where a symbol may have an unboundednumber of 
hildren). Both properties are parti
ularly relevant for appli
ations: nondeterministi
automata are required for the inferen
e problem to be relevant (re
all that Hidden Markov Modelsare equivalent to nondeterministi
 string automata); nowadays appli
ations for Web InformationExtra
tion, Web Servi
es and do
ument pro
essing 
onsider unranked trees.1 Representation IssuesTrees, either ranked or unranked, arise in many appli
ation domains to model data. For instan
exml do
uments are unranked trees; in natural language pro
essing (NLP), synta
ti
 stru
ture 
anoften be 
onsidered as treelike. From a ma
hine learning perspe
tive, dealing with tree stru
tureddata often requires to design probability distributions over sets of trees. This problem has beenaddressed mainly in the NLP 
ommunity with tools like probabilisti
 
ontext free grammars [8℄.Weighted tree automata and tree series are powerful tools to deal with tree stru
tured data. Inparti
ular, probabilisti
 tree automata and sto
hasti
 series, whi
h both de�ne probability distri-butions on trees, allow to generalize usual te
hniques from probabilisti
 word automata (or hiddenmarkov models) and series.Tree Series and Weighted Tree Automata In these �rst two paragraphs, we only 
onsider the 
aseof ranked trees. A tree series is a mapping from the set of trees into some semiringK. Motivated byde�ning probability distributions, we mainly 
onsider the 
ase K = R. A re
ognizable tree series [2℄
S is de�ned by a �nite dimensional ve
tor spa
e V over K, a mapping µ whi
h maps every symbolof arity p into a multilinear mapping from V p into V (µ uniquely extends into a morphism fromthe set of trees into V ), and a linear form λ. S(t) is de�ned to be λ(µ(t)). Tree series 
an alsobe de�ned by weighted tree automata (wta). A wta A is a tree automaton in whi
h every rule isgiven a weight in K. For every run r on a tree t (
omputation of the automaton a

ording to rulesover t), a weight A(t, r) is 
omputed multiplying weights of rules used in the run and the �nalweight of the state at the root of the tree. The weight A(t) is the sum of all A(t, r) for all runs rover t. 28



For 
ommutative semirings, re
ognizable tree series in the algebrai
 sense and in the automatasense 
oin
ide be
ause there is an equivalen
e between summation at every step and summationover all runs. It 
an be shown, as in the string 
ase, that the set of re
ognizable tree series de�nedby deterministi
 wta is stri
tly in
luded in the set of re
ognizable tree series. A Myhill-NerodeTheorem 
an be de�ned for wta over �elds [1℄.Probability Distributions and Probabilisti
 Tree Automata A probability distribution S over trees isa tree series su
h that, for every t, S(t) is between 0 and 1, and su
h that the sum of all S(t) is equalto 1. Probabilisti
 tree automata (pta) are wta verifying normalization 
onditions over weights ofrules and weights of �nal states. They extend probabilisti
 automata for strings and we re
all thatnondeterministi
 probabilisti
 string automata are equivalent to hidden Markov models (hmms).As in the string 
ase [5℄, not all probability distributions de�ned by wta 
an be de�ned by pta.However, we have proved that any distribution de�ned by a wta with non-negative 
oe�
ients 
ande�ned by a pta, too.While in the string 
ase, every probabilisti
 automaton de�nes a probability distribution, thisis no longer true in the tree 
ase. Similarly to probabilisti
 
ontext-free grammars [9℄, probabilisti
automata may de�ne in
onsistent (or improper) probability distributions: the probability of alltrees is less than one. We have de�ned a su�
ient 
ondition for a pta to de�ne a probabilitydistribution and a polynomial time algorithm for 
he
king this 
ondition.Towards unranked trees Until this point, we only have 
onsidered ranked trees. However, unrankedtrees 
an be expressed by ranked ones using an isomorphism de�ned by an algebrai
 formula-tion ([3℄, 
hapter 8). It 
onsists in using the right adjon
tion operator de�ned by f(t1, . . . , tn−1)@tn =
f(t1, . . . , tn); any tree 
an then be written as an expression whose only operator is @, and thus asa binary tree: e.g., b(a, a, c(a, a)) 
orresponds to @(@(@(b, a), a),@(@(c, a), a)). wta for unrankedtrees 
an be de�ned as wta for ranked trees applied to the algebrai
 formulation. We 
all su
hautomata weighted stepwise tree automata (wsta).Hedge automata are automata for unranked trees. Ea
h rule of a hedge automaton [3℄ is written
f(L) → q where L is a regular language of word with the set of states of the automata as itsalphabet. For weighted hedge automata (wha), the weight of the rule f(u) → q is the produ
tof a weight given to the whole rule f(L) → q and the weight of u a

ording to a weighted wordautomata asso
iated to f(L) → q. When K is 
ommutative, wsta and wha de�ne the same weightdistributions on unranked trees.Probabilisti
 hedge automata 
an be de�ned by adding the same kind of summation 
onditionsthan on wha, but it has yet to be shown that they 
an be expressed by pta through algebrai
formulation. We don't know yet weither de�ning series on unranked trees dire
tly is possible,although it 
an be a
hieved using the algebrai
 formulation.2 Learning Probability DistributionsInferen
e and Training pta 
an be 
onsidered as generative models for trees. The two 
lassi
alinferen
e problems are : given a pta A and given a tree t, 
ompute p(t) whi
h is de�ned to thesum over all of all p(t, r); and given a tree t, �nd the most likely (or Viterbi) labeling (run) r̂ for t,i.e. 
ompute r̂ = arg maxr p(r|t). It should be noted that the inferen
e problems are relevant onlyfor nondeterministi
 pta. The training problem is: given a sample set S of trees and a pta, learnthe best real-valued parameter ve
tor (weights assigned to rules and to states) a

ording to some
riteria. For instan
e, the likelihood of the sample set or the likelihood of the sample over Viterbiderivations. Classi
al algorithms for inferen
e (the message passing algorithm) and learning (theBaum-Wel
h algorithm) 
an be designed for pta over ranked trees and unranked trees.Learning Weighted Automata The learning problem extends over the training problem. Indeed,for the training problem, the stru
ture of the pta is given by the set of rules and only weightshave to be found. In the learning problem, the stru
ture of the target automaton is unknown. The29



learning problem is: given a sample set S of trees drawn a

ording to a target rational probabilitydistribution, learn a wta a

ording to some 
riteria. If the probability distribution is de�ned by adeterministi
 pta, a learning algorithm extending over the unweighted 
ase has been de�ned in [4℄.However, this algorithm works only for deterministi
 pta. We re
all that the 
lass of probabilitydistributions de�ned by deterministi
 pta is stri
tly in
luded in the 
lass of probability distributionsde�ned by pta [1℄.Learning Re
ognizable Tree Series and thus learning wta 
an be a
hieved thanks to an algorithmproposed by Denis and Habrard [6℄. This algorithm, whi
h bene�ts from the existen
e of a 
anoni
allinear representation of series, 
an be applied to series whi
h take their values in R or Q to learnsto
hasti
 tree languages. It should be noted that the algebrai
 view allows to learn probabilitydistributions de�ned by nondeterministi
 wta. Learning probability distributions for unrankedtrees is ongoing work.Referen
es1. Björn Bor
hardt. The myhill-nerode theorem for re
ognizable tree series. In Zoltán Ésik and ZoltánFülöp, editors, Developments in Language Theory, volume 2710 of Le
ture Notes in Computer S
ien
e,pages 146�158. Springer Verlag, 2003.2. Jean Berstel and Christophe Reutenauer. Re
ognizable formal power series on trees. Theoreti
alComputer S
ien
e, 18:115�148, 1982.3. H. Comon, M. Dau
het, R. Gilleron, F. Ja
quemard, D. Lugiez, S. Tison, and M. Tommasi. Treeautomata te
hniques and appli
ations. Available on: http://www.grappa.univ-lille3.fr/tata, 1997.4. Rafael C. Carras
o, José On
ina, and Jorge Calera-Rubio. Sto
hasti
 inferen
e of regular tree lan-guages. Ma
hine Learning, 44(1/2):185�197, 2001.5. François Denis, Yann Esposito, and Amaury Habrard. Learning rational sto
hasti
 languages. InGabor Lugosi and Hans Ulri
h Simon, editors, Learning theory, Le
ture Notes in Computer S
ien
e.Springer Verlag, 2006.6. François Denis and Amaury Habrard. Learning rational sto
hasti
 tree languages. In Markus Hut-ter, Ro

o A. Servedio, and Eiji Takimoto, editors, Algorithmi
 Learning Theory, 18th InternationalConferen
e, volume 4754 of Le
ture Notes in Arti�
ial Intelligen
e, pages 242�256. Springer Verlag,2007.7. Z. Esik and W. Kui
h. Formal tree series. Journal of Automata, Languages and Combinatori
s, 8:219� 285, 2003.8. C. Manning and H. S
hütze. Foundations of Statisti
al Natural Language Pro
essing. MIT Press,Cambridge, 1999.9. C. S. Wetherell. Probabilisti
 languages: A review and some open questions. ACM Comput. Surv.,12(4):361�379, 1980.
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Predi
tion of Subalphabets and Rankingin DAWG's for Natural LanguagesAlexander E
klLehrstuhl für Informatik II, Universität WürzburgAm Hubland, 97074 Würzburg, Germanye
kl�informatik.uni-wuerzburg.deA new 
ompressed representation of DAWG's (dire
ted a
y
li
 word graphs [2℄) was developedfor large sets of words for natural languages. The representation was used in appli
ations likenavigation in large digital en
y
lopedias or sear
h appli
ations, e. g. with up to more than 800,000words.The advantage of a DAWG is the fast a

ess time for stored words (O(n) with n: maximumlength of the stored words). But the disadvantage is the memory 
onsumption, espe
ially if theDAWG is naively implemented by an array of |Σ| pointers for ea
h node (|Σ| × 4 B per node),where |Σ| is the size of the underlying alphabet. This is parti
ularly true for natural languages,e. g. with alphabets of size 30 to 100, sin
e in this 
ase ea
h node has, as an average, only a few
hildren and most of the stored pointers are null.One possible solution for the memory problem is the usage of bit ve
tors for ea
h DAWG node.A bit in the ve
tor of size |Σ| is set if and only if the son of the 
orresponding 
hara
ter exists.For ea
h node a bit ve
tor and, optionally, pointers to existing sons and weights for ranking of therepresented words are stored.A new approa
h was developed for DAWG's with large alphabets. The te
hnique was derivedfrom text 
ompression with �nite 
ontext models. Algorithms like the PPM family (predi
tionby partial mat
hing [1℄, [3℄) are using pre
eding 
hara
ters to predi
t and 
ompress the following
hara
ters of a text. For example, in English texts it is very probable that q is followed by u. PPMis one of the best methods for text 
ompression.In an analogous manner the 
hara
ters pre
eding a DAWG node are used to predi
t the lo
alsubalphabet of a node and a mu
h smaller bit ve
tor has to be stored.Referen
es1. J. G. Cleary and I. H. Witten. Data 
ompression using adaptive 
oding and partial string mat
hing.IEEE Transa
tions on Communi
ations, 32:396�402, April 1984.2. M. Cro
hemore and R. Vérin. Dire
t 
onstru
tion of 
ompa
t dire
ted a
y
li
 word graphs. InA. Apostoli
o and J. Hein, editors, Pro
eedings of the 8th Annual Symposium on Combinatorial PatternMat
hing, number 1264, pages 116�129, Aarhus, Denmark, 1997. Springer-Verlag, Berlin.3. A. Mo�at. Implementing the PPM data 
ompression s
heme. IEEE Transa
tions on Communi
ations,38:1917�1921, 1990.
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Weighted Tree-Walking Automata⋆Zoltán Fülöp and Loránd MuzamelDepartment of Foundations of Computer S
ien
e, University of SzegedÁrpád tér 2., H-6720 Szeged, Hungary
{fulop,muzamel}�inf.u-szeged.huThe 
on
ept of a tree-walking automaton (for short: twa) was introdu
ed in [1℄ for modellingthe syntax-dire
ted translations from strings to strings. Re
ently its importan
e grew in XMLtheory. A twa A is a sequential �nite-state tree a

eptor with �nitely many transition rules, whi
h,obeying its state-behaviour, walks along the edges of an input tree s ∈ TΣ, where Σ is the inputranked alphabet of A. Then A a

epts s if there is an a

epting run on s, i.e., a �nite walk on sfrom the initial state to the a

epting state. The tree language re
ognized by a twa is e�e
tivelyregular, however there exists a regular tree language that 
annot be re
ognized by any twa [2℄.There are several extensions of twa whi
h still re
ognize regular tree languages, su
h as twa withweak pebbles [4℄, strong pebbles [5℄ and also invisible pebbles [6℄.We introdu
e the weighted version of a twa. In a weighted tree-walking automaton A (for short:wtwa), every transition rule has a weight taken from a 
ommutative semiring K. We assume that

A is non
ir
ular, i.e., it does not enter into a loop of transitions. The weight of a run of A onan input tree s is the produ
t of the weights of the applied transition rules, while the weight of s
omputed by A is the sum of the weights of all the a

epting runs of A on s. Sin
e A is non
ir
ular,it has only �nitely many a

epting runs on s. In this way, A re
ognizes a tree series SA : TΣ → K,where SA(s) is the weight of s for every input tree s.We investigate the re
ognizing power of wtwa. For this we 
onsider the redu
ed weighted MSOlogi
 of [3℄ whi
h 
hara
terize e�e
tively the 
lass of regular tree series over a 
ommutative semiring.We show that the tree series re
ognizable by non
ir
ular wtwa 
an be de�ned in redu
ed weightedMSO logi
.Referen
es1. A. V. Aho and J. D. Ullman. Translations on a 
ontext�free grammar. Inform. Control, 19:439�475,1971.2. M. Boja«
zyk and T. Col
ombet. Tree-walking automata do not re
ognize all regular languages. InPro
eedings of the thirty-seventh annual ACM symposium on Theory of 
omputing (STOC '05), pages234�243, New York, NY, USA, 2005. ACM Press.3. M. Droste and H. Vogler. Weighted tree automata and weighted logi
s. Theoret. Comput. S
i.,366:228�247, 2006.4. J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In Jewels are Forever, Contribu-tions on Theoreti
al Computer S
ien
e in Honor of Arto Salomaa, pages 72�83, London, UK, 1999.Springer-Verlag.5. J. Engelfriet and Hendrik Jan Hoogeboom. Automata with nested pebbles 
apture �rst-order logi
with transitive 
losure. Te
hni
al Report 05-02, Leiden University, The Netherlands, April 2005.6. Joost Engelfriet, Hendrik Jan Hoogeboom, and Bart Samwel. Xml transformation by tree-walkingtransdu
ers with invisible pebbles. In Pro
eedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Prin
iples of database systems (PODS '07), pages 63�72, New York, NY,USA, 2007. ACM Press.
⋆ This resear
h was supported by the Hungarian S
ienti�
 Fund.32



Varieties of Re
ognizable Tree Series over Fields⋆Zoltán Fülöp1 and Magnus Steinby21Department of Foundations of Computer S
ien
e, University of SzegedÁrpád tér 2., H-6720 Szeged, Hungaryfulop�inf.u-szeged.hu2Department of Mathemati
s, University of TurkuFIN-20014 Turku, Finlandsteinby�utu.fiOur aim is to develop a theory of varieties of weighted tree languages. More spe
i�
ally, we
onsider varieties of tree series of the kind studied by Berstel and Reutenauer [1℄, i.e., tree seriesover a �eld.Let K be a �eld, Σ a ranked alphabet and X a leaf alphabet. Then a KΣX-tree series is amap S : TΣ(X) → K, where TΣ(X) is the set of ΣX-trees, and a KΣ-algebra is a system C =
(C,+, 0, Σ), where (C,+, 0) is a K-ve
tor spa
e and ea
h symbol σ ∈ Σ is realized as a multilinearoperation on C of the appropriate arity. Our synta
ti
 algebras of tree series are essentially those
onsidered in [2℄ and derived from the 
orresponding notion for string series [4℄. Hen
e, the synta
ti

KΣ-algebra SA(S) of a re
ognizableKΣX-tree series S is a �nite-dimensionalKΣ-algebra. Ratherthan using synta
ti
 ideals as in [4, 2℄, we start with synta
ti
 
ongruen
es that have a more obviousintuitive meaning. Similarly as in the 
ase of ordinary tree languages (
f. [5℄), it is 
onvenient topresent the basi
 theory of synta
ti
 
ongruen
es and synta
ti
 algebras for series over general
Σ-algebras.A variety of KΣ-tree series is a family V = {V(X)}X of tree series with 
ertain natural 
losureproperties, where for ea
h X , V(X) is a set of re
ognizable KΣX-tree series. The variety theorem,akin to Eilenberg's [3℄ fundamental theorem, establishes � via synta
ti
 algebras � a 
orresponden
ebetween them and varieties of �nite-dimensional KΣ-algebras.Referen
es1. Berstel, J. and Reutenauer, C.: Re
ognizable power series on trees. Theoreti
al Computer S
ien
e 18(1982), 115�148.2. Bozapalidis, S. and Alexandrakis, A.: Representation matri
ielles de séries d'arbre re
onnaissables.Theoreti
al Informati
s and Appli
ations 23(4) (1989), 449�459.3. Eilenberg, S.: Automata, Languages, and Ma
hines. Vol. B., A
ademi
 Press, New York 1976.4. Reutenauer, C.: Séries formelles et algèbres synta
tiques. Journal of Algebra 66 (1980), 448�483.5. Steinby, M.: A theory of tree language varieties. Tree Automata and Languages (eds. M. Nivat and A.Podelski), North-Holland, Amsterdam 1992, 57�81.

⋆ This resear
h was supported by the Hungarian S
ienti�
 Fund.33



Weighted Automata De�ne a Hierar
hy ofTerminating String Rewriting SystemsAndreas Gebhardt and Johannes WaldmannHo
hs
hule für Te
hnik, Wirts
haft und Kultur (FH) LeipzigFb IMN, PF 30 11 66, D-04251 Leipzig, GermanyRewriting is pattern repla
ement in 
ontext. It serves as a model of 
omputation whi
h is Turing-
omplete. Thus all �interesting� semanti
 properties are unde
idable, in
luding the very naturalquestion of termination: for a given rewriting system, are all derivations �nite? Sin
e the problemis signi�
ant in pra
ti
e, e.g. for the analysis of software, one is interested in semi-algorithms:
omputable methods of proving termination that are sound, but not 
omplete.One su
h method to prove termination of string rewriting is �matrix interpretation� [HW06℄.These interpretations are in fa
t N-weighted �nite automata. The method has been generalizedfrom string rewriting to term rewriting [EWZ06℄. Several automated termination provers nowimplement this method.The method in fa
t solves a more general problem: that of relative termination. A rewritingsystem R terminates relative to a rewriting system S if ea
h mixed derivation (
ontaining R and Ssteps in any order) 
ontains only �nitely many R steps. While being an interesting 
on
ept in itself,relative termination helps to solve standard termination problems be
ause it allows to 
omposetermination proofs: if R terminates relative to S then termination of R∪S follows from terminationof S, and the latter 
an be proved separately. This 
orresponds to a lexi
ographi
 
ombination ofinterpretations.One dire
tion for extension of the matrix method is to pi
k a weight semi-ring that stri
tlyin
ludes N. In [GHW07℄ we reported on some experiments with non-negative rationals. In thepresent note, we provide a basis for a systemati
 approa
h to 
ompare these (and other) terminationmethods, by de�ning a suitable hierar
hy, and we prove some of its properties.Automata and Rewriting Systems. A weighted automaton A is 
alled weakly (stri
tly, resp.) 
om-patible with a rewriting system R if for ea
h rewrite step u→R v, the sequen
e of weights A(u), A(v)
omputed by the automaton is weakly (stri
tly, resp.) de
reasing.There is a lo
al 
riterion on A that 
an e�e
tively be 
he
ked and that implies 
ompatibility asde�ned here. Basi
ally, it is enough to 
ompare interpretations of left-hand sides and right-handsides of rules (as matri
es).If an automaton A with a well-founded weight domainW is stri
tly 
ompatible with a rewritingsystem R and weakly 
ompatible with a rewriting system S, then R is terminating relative to S.A Notation for Termination Proofs by Rule Removals. We denote by M(W,n) the set of pairs ofrewriting systems (R,S) for whi
h an automaton exists with weight domain W and n states thatis stri
tly 
ompatible with R \ S and weakly 
ompatible with S. We also write R M(W,n)
S. Thisnotation indi
ates that the termination problem of R 
an be redu
ed to the termination problemof S by removing the rules in R \ S due to an interpretation 
omputed by an automaton with thegiven parameters.The relational notation also suggests 
omposability. For any sequen
e of rewriting systems Riand relations Pi, from R0

P1

. . .
Pn

Rn it follows that R0 \ Rn terminates relative to Rn. If
Rn = ∅, then R0 terminates.If P1 = . . . = Pn = P , we write R0

P ∗
Rn or (R0, Rn) ∈ P ∗.We abbreviate ∪n≥1M(W,n) by M(W ). Then in our notation M(N) is the set of all rewrit-ing systems that have a one-step termination proof using some natural-weighted automaton, and

M(N)∗ is the set of all systems with a multi-step termination proof using su
h automata.34



Number of States. For ea
h d ≤ d′, M(W,d) ⊆ M(W,d′). This follows easily sin
e we 
an introdu
euseless states in an automaton of size d, to obtain an automaton of size d′ that 
omputes the samefun
tion.Using the Amitsur-Levitzki theorem, for ea
h d we �nd some d′ > d su
h that the in
lusion isstri
t. This implies that the hierar
hy is in�nite. It remains open whether it is stri
t at ea
h level.It is known that M(W, 1) ⊂ M(W, 2) ⊂ M(W, 3).Choi
e of Weight Domain. For ea
h d, M(N, d) ⊆ M(Q≥0, d). This is 
lear sin
e N is a sub-semi-ring of Q≥0.We give an example (R,S) ∈ M(Q≥0, 3)2 \ M(N)∗, that is, with a two-step termination proofof rational-weighted automata of size 3, but no natural-weighted termination proof of any size andnumber of steps.Proofs with one or many steps. Obviously M(W,d) ⊆ M(W,d)∗.There is an example (R, ∅) ∈ M(N, 2)2 \ M(N), that is, a system with a two-step proof using atwo-state automaton, but no one-step proof (for automata of any size) [HW06℄.Referen
es[EWZ06℄ Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix interpretations for provingtermination of term rewriting. In Ulri
h Furba
h and Natarajan Shankar, editors, IJCAR, volume4130 of Le
ture Notes in Computer S
ien
e, pages 574�588. Springer, 2006.[GHW07℄ Andreas Gebhardt, Dieter Hofbauer, and Johannes Waldmann. Matrix evolutions. In Workshopon Termination (WST07), 2007.[HW06℄ Dieter Hofbauer and Johannes Waldmann. Termination of string rewriting with matrix inter-pretations. In Frank Pfenning, editor, RTA, volume 4098 of Le
ture Notes in Computer S
ien
e,pages 328�342. Springer, 2006.
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A Survey of Integer Weighted Finite AutomataVesa Halava, Tero Harju, Eero LehtonenDepartment of Mathemati
sFI-20014 Turku, Finland
{vesa.halava, tero.harju, elleht}�utu.fiThe integer weighted automata, denoted by FA(Z), are 
losely related to 1-turn automata as
onsidered espe
ially by Ibarra [3℄. In our model the 
ounter is repla
ed by a weight fun
tion ofthe transitions, and while doing so, the �nite automaton be
omes independent of the 
ounter. Tobe pre
ise, the weight fun
tion is 
al
ulated additively and the input is a

epted if and only if theweight of its path is zero.In this survey, we 
on
entrate on unde
idability results 
on
erning integer weighted automata.First we show that the universe problem for the FA(Z) is unde
idable [1℄. This is done by givingan expli
it 4-stated unimodal integer weighted automaton that a

epts every word in A∗ if andonly if a given instan
e of Post Corresponden
e Problem has a solution.We also give a matrix representation [2℄ of integer weighted �nite automata via Laurent poly-nomials. This leads to an analogue of a fundamental result in the theory of rational series and alsogives an unde
idability result for these matri
es.The main purpose of this survey is to present the basi
s and also some highlights of the theoryof integer weighted automata. We will mainly fo
us on original 
onsiderations made by the �rsttwo authors. Also, some open problems are dis
ussed.Referen
es1. V. Halava and T. Harju.Unde
idability in Integer Weighted Finite Automata, Fundamenta Informati
ae39 (1999), 189�200.2. V. Halava and T. Harju. Unde
idability in Matri
es over Laurent Polynomials, Adv. in Appl. Math.33, Issue 4 (2004), 747�752.3. O. H. Ibarra. Restri
ted one-
ounter ma
hines with unde
idable universe problems, Math. SystemsTheory 13 (1979), 181�186.
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Statisti
al Language Models within the Algebra ofWeighted Rational LanguagesThomas Hanneforth1 and Kay-Mi
hael Würzner21University of Potsdam2Berlin-Brandenburg A
ademy of S
ien
eFinite State Ma
hines (FSMs) have been used in the �eld of statisti
al language modelingfor a very long time. The majority of existing approa
hes uses them merely as a 
onvenient datastru
ture, mostly disregarding the underlying algebra with its well-de�ned operations like union andinterse
tion. Instead of that, a bun
h of spe
ialized algorithms for the 
onstru
tion and appli
ationof statisti
al language models (LMs) are used (e.g. [1℄, [2℄).We think that this way of 
on
eiving and using LMs is not desirable sin
e it 
ompromises themodularity of larger appli
ations built on FSMs. Alternatively, the algebra of weighted rationallanguages (WRLs) and transdu
tions (WRTs, 
f. [3℄) should su�
e. As a 
ase study, we presentan alternative method for 
onstru
ting LMs (N -gram models, in
luding dis
ounting, ba
k-o�, andinterpolation as well as 
lass-based and dis
ontinuous N -gram models) in a 
ompletely algebrai
way. Besides the usual rational operations, we need in addition only simple trivially weighted�nite-state transdu
ers depending on the order N and the alphabet Σ under 
onsideration. Thesetransdu
ers map pre�xes and/or su�xes of N -gram strings to ε or other symbols.Creating an N -gram model 
onsists of 
ounting N -grams in a 
orpus, normalizing these 
ounts,handling sparseness by smoothing, and �nally applying an algorithm resulting in an weighted FSMa

epting strings of arbitrary length. To give an impression how to handle all these steps withinthe algebra of weighted rational languages, we exemplify our approa
h fo
using on the step oftransforming N -gram frequen
ies into 
onditional probabilities.The 
onditional probability of an N -gram is 
omputed by equation (1).
Pr(wi|w

i−1
i−N+1) =

C(wi−1
i−N+1wi)

∑

w

C(wi−1
i−N+1w)

(1)Given an WRL CN : ΣN → R+ mapping N -grams to their frequen
ies, this normalization isperformed in two steps: To represent the denominator in equation (1) we introdu
e an WRT
Ek

N : ΣN × ΣN → R+ whi
h maps all k-gram su�xes to ea
h other (what in e�e
t assigns ea
hweight to every symbol):
E

k
N (x, y) = (ΣN−k · (Σ ×Σ)k)(x, y) (2)Setting k = 1, the appli
ation E1
N [CN ] performs the summing over the unigram su�xes of all N -grams sharing the same N − 1-gram pre�x as demanded by equation (1)⋆. The se
ond step is thedivision of the 
orresponding N and N − 1-gram 
ounts. To model this arithmeti
 operation, one
an take advantage of two properties of the real semiring (R = 〈R+,+, ·, 0, 1〉): 1) The abstra
tsemiring multipli
ation ⊗ is instantiated in R with the a
tual multipli
ation of real numbers. 2) Ris a division semiring ([4℄) that is, ∀a 6= 0 ∈ K, ∃b ∈ K su
h that a⊗ b = 1. Given these propertiesand the fa
t that weighted interse
tion 
ombines weights by ⊗ ([5℄), it is possible to representdivision by interse
tion with multipli
ative inverses. We therefore introdu
e an operation 
alled

⊗-negation denoted by −1 whi
h repla
es every weight with its multipli
ative inverse. It is nowpossible to de�ne the following WRL Pc
N : ΣN → R+ whi
h represents the 
onditional probabilitiesof the 
ounts in CN .

P
c
N (x) = CN ∩ (E1

N [CN ])−1(x) (3)
⋆ Note that the appli
ation T[L] is an abbreviation for the se
ond proje
tion of the 
omposition of ID(L)and T. 37



Our approa
h is implemented on the basis of weighted �nite-state ma
hines (WFSM) 
orrespondingto the given WRLs. This enables us to make use of the usual optimization pro
edures for WFSMs.Moreover, the 
hara
ter of the given WRLs allows for representing the 
orresponding WFSMs ina virtual way permitting a

ess to states and transitions in 
onstant time and 
onsuming only a
onstant amount of memory independent of the size of N and Σ. The 
ross-produ
t of Σ used in
Ek

N would otherwise need a quadrati
 number of transitions relative to the size of Σ.We will show that the 
omplexity of the 
omplete algebrai
 spe
i�
ation � whi
h leads to aminimal LM, as long as the N -gram frequen
ies are represented as a minimal WFSM � is linear inthe size of the given training 
orpus.Referen
es1. Giuseppe Ri

ardi, Roberto Piera

ini, and Enri
o Bo

hieri. Sto
hasti
 Automata for LanguageModeling. Computer Spee
h & Language, 10(3):265�293, 1996.2. David Llorens, Juan Miguel Vilar, and Fran
is
o Casa
uberta. Finite State Language Models SmoothedUsing n-Grams. International Journal of Pattern Re
ognition and Arti�
ial Intelligen
e, 16(3):275�289,2002.3. Fernando C.N. Pereira and Mi
hael D. Riley. Spee
h Re
ognition by Composition of Weighted Fi-nite Automata. In Emmanuel Ro
he and Yves S
habes, editors, Finite-State Language Pro
essing,volume 12 of Language, Spee
h, and Communi
ation, 
hapter 15, pages 433�453. The MIT Press,Cambridge, MA, 1997.4. Jason Eisner. Simpler and More General Minimization for Weighted Finite-State Automata. In Pro-
eedings of the 2003 Conferen
e of the North Ameri
an Chapter of the Asso
iation for ComputationalLinguisti
s on Human Language Te
hnology, volume 1, pages 64�71, Morristown, NJ, 2003. Asso
iationfor Computational Linguisti
s.5. Mehryar Mohri, Fernando Pereira, and Mi
hael Riley. Weighted Automata in Text and Spee
h Pro-
essing. In William Wahlster, editor, ECAI 96. 12th European Conferen
e on Arti�
ial Intelligen
e.John Wiley & Sons, Ltd., 1996.
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Relationships between FFA-re
ognizability andDFA-re
ognizability of Fuzzy LanguagesJelena Ignjatovi¢1, Miroslav �iri¢1, and Tatjana Petkovi¢21Fa
ulty of S
ien
es and Mathemati
s, University of Ni²Vi²egradska 33, 18000 Ni², Serbiajejaign�yahoo.
om, 
iri
m�bankerinter.net2NokiaJoensuunkatu 7, FIN-24100 Salo, Finlandtatjana.petkovi
�nokia.
omIn this talk we will present the results from [4, 5℄, 
on
erning relationshipsbetween re
ognizability of fuzzy languages by fuzzy �nite automata (FFA-re
ognizability) andtheir re
ognizability by deterministi
 �nite automata (DFA-re
ognizability). Equivalen
e betweenFFA-re
ognizability and DFA-re
ognizability of fuzzy languages over a lo
ally �nite 
omplete lat-ti
e was established by B¥lohlávek [1℄. A more general result was obtained by Li and Pedry
z [6℄,who studied fuzzy automata over a latti
e ordered monoid L , and proved that FFA-re
ognizabilityis equivalent to DFA-re
ognizability if and only if the semiring redu
t L ∗ of L (with respe
t tothe join and multipli
ation operations) is lo
ally �nite. B¥lohlávek [1℄ and Li and Pedry
z [6℄ gavea method for determinization of fuzzy automata, whi
h results in a �nite automaton if and only if
L

∗ is lo
ally �nite. Another method, developed in [4℄ for fuzzy languages over a 
omplete residu-ated latti
e L , 
an result in a �nite automaton even if L ∗ is not lo
ally �nite, and always givesa smaller automaton than the method by B¥lohlávek and Li and Pedry
z. Certain 
riterions for�niteness of the resulting deterministi
 automaton have been obtained in [4, 5℄, where it has beenshown that this automaton is a minimal deterministi
 automaton re
ognizing all fuzzy languageswhi
h 
an be re
ognized by the original fuzzy automaton.In [5℄ the authors studied DFA-re
ognizability of fuzzy languages with membership values in anarbitrary set having two distinguished elements 0 and 1, whi
h are needed to take 
risp languagesinto 
onsideration. DFA-re
ognizability of these fuzzy languages has been 
hara
terized throughtheir synta
ti
 right 
ongruen
es and synta
ti
 
ongruen
es, and it has been proved that for anyfuzzy language there exists a minimal deterministi
 automaton re
ognizing it, whi
h is unique up toan isomorphism. This automaton has been 
onstru
ted by means of derivatives of a fuzzy language,as well as by means of derivatives of 
ertain 
risp languages asso
iated with a fuzzy language (kerneland 
ut languages), and an algorithm for minimization of a deterministi
 automaton whi
h re
ogni-zes a fuzzy language has been given. A similar algorithm, for deterministi
 automata re
ognizingfuzzy languages over a distributive latti
e, has been re
ently given by Li and Pedry
z [7℄.Re
ognizability of fuzzy languages by �nite monoids (FM-re
ognizability) has been re
entlystudied by Bozapalidis and Lous
ou-Bozapalidou [2, 3℄, who have established 
ertain relationshipsbetween FM-re
ognizability and FFA-re
ognizability of fuzzy languages. In [5℄ the authors haveshown that FM-re
ognizability of fuzzy languages is equivalent to DFA-re
ognizability.A
knowledgment. Resear
h supported by Ministry of S
ien
e, Republi
 of Serbia, Grant No.144011Referen
es1. B¥lohlávek, R.: Determinism and fuzzy automata. Information S
ien
es 143, 205�209 (2002)2. Bozapalidis, S., Lous
ou-Bozapalidou, O.: On the re
ognizability of fuzzy languages I. Fuzzy Sets andSystems 157, 2394�2402 (2006)3. Bozapalidis, S., Lous
ou-Bozapalidou, O.: On the re
ognizability of fuzzy languages II. Fuzzy Sets andSystems 159, 107-113 (2008) 39



4. Ignjatovi¢, J., �iri¢, M., Bogdanovi¢, S.: Determinization of fuzzy automata with membership valuesin 
omplete residuated latti
es. Information S
ien
es 178, 164�180 (2008)5. Ignjatovi¢, J., �iri¢, M., Bogdanovi¢, S., Petkovi¢, T.: Myhill-Nerode type theory for fuzzy languagesand automata. submitted for publi
ation6. Li, Y.M., Pedry
z, W.: Fuzzy �nite automata and fuzzy regular expressions with membership valuesin latti
e ordered monoids. Fuzzy Sets and Systems 156, 68�92 (2005)7. Li, Y.M., Pedry
z, W.: Minimization of latti
e �nite automata and its appli
ation to the de
ompositionof latti
e languages. Fuzzy Sets and Systems 158, 1423�1436 (2007)
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De
iding Unambiguity and Sequentiality from aPolynomially Ambiguous min-plus Automaton⋆Daniel Kirsten1,† and Sylvain Lombardy21University Leipzig, Institute for Computer S
ien
e04009 Leipzig, Germanywww.informatik.uni-leipzig.de/∼kirsten/2Institut Gaspard Monge, Université de Marne-la-Vallée77454 Marne-la-Vallée Cedex 2, Fran
eigm.univ-mlv.fr/∼lombardy/The sequentiality/unambiguity problem is one of the most intriguing open problems in thetheory of min-plus automata: de
ide (
onstru
tively) whether some given min-plus automatonadmits a sequential/unambiguous equivalent. This problem is wide open despite it was studied byseveral resear
hers, e.g. [1, 2, 4, 5℄.In 2004, it was shown by Klimann, Lombardy, Mairesse, and Prieur that the sequential-ity/unambiguity problem is de
idable for �nitely ambiguous min-plus automata [2℄.The 
lass of polynomially ambiguous min-plus automata lies stri
tly between the 
lasses of�nitely ambiguous and arbitrary min-plus automata.In the talk, we generalize the result from [2℄ by showing that the sequentiality/unambiguityproblem is de
idable for polynomially ambiguous min-plus automata. For this, we have to handleseveral problems:1. The equivalen
e problem for polynomially ambiguous min-plus automata is unde
idable [3℄.Thus, we 
annot de
ide state equivalen
e in our proofs.2. The key 
onstru
tion in [2℄ relies on a de
omposition of the given �nitely ambiguous min-plusautomaton into a �nite family of unambiguous min-plus automata. Su
h a de
omposition isnot possible for polynomially ambiguous min-plus automata. We over
ome this problem bydeveloping a theory of so-
alled metatransitions.3. The proof in [2℄ relies on pumping te
hniques. We 
an show by an example that pumpingte
hniques are not su�
ient to de
ide the sequentiality/unambiguity problem for �nitely am-biguous min-plus automata. We develop nested pumping te
hniques whi
h lead us to interestingBurnside type problems for matri
es over the tropi
al semiring.Referen
es1. I. Klimann, S. Lombardy, J. Mairesse, and C. Prieur. De
iding the sequentiality of a �nitely ambiguousmax-plus automaton. In Z. Ésik and Z. Fülöp, editors, DLT'03 Pro
eedings, volume 2710 of Le
tureNotes in Computer S
ien
e, pages 373�385. Springer-Verlag, Berlin, 2003.2. I. Klimann, S. Lombardy, J. Mairesse, and C. Prieur. De
iding unambiguity and sequentiality from a�nitely ambiguous max-plus automaton. Theoreti
al Computer S
ien
e, 327(3):349�373, 2004.3. D. Krob. The equality problem for rational series with multipli
ities in the tropi
al semiring is unde-
idable. International Journal of Algebra and Computation, 4(3):405�425, 1994.4. S. Lombardy and J. Sakarovit
h. Sequential? Theoreti
al Computer S
ien
e, 356:224�244, 2006.5. M. Mohri. Finite-state transdu
ers in language and spee
h pro
essing. Computational Linguisti
s,23:269�311, 1997.
⋆ A full paper is available on the authors homepages.
† The main results were a
hieved during a three months stay of the author at the Institute Gaspard-Mongeat the Université Marne-la-Vallée whi
h was funded by the CNRS.41



Max/Plus Tree Automatafor Termination of Term RewritingAdam Koprowski1 and Johannes Waldmann21TU Eindhoven, The Netherlandshttp://www.win.tue.nl/∼akoprows/2HTWK Leipzig, Germanyhttp://www.imn.htwk-leipzig.de/∼waldmann/Term rewriting is a model of 
omputation. It serves as the basis for fun
tional programming andfor formal (algebrai
) spe
i�
ation. Termination of rewriting therefore is an interesting property.It is unde
idable in general, but there are several semi-algorithms, used by automated terminationprovers.One method of proving termination is interpretation into a well-founded algebra. While polyno-mial interpretations (over the naturals) are well-known, a re
ent development is the matrix method[HW06,EWZ06℄ that uses linear interpretations over ve
tors of naturals, equivalently, N-weightedautomata. In [Wal06,Wal07℄ we extended this method (for string rewriting) to ar
ti
 automata, i.e.on the max/plus semi-ring on {−∞}∪N. Its implementation in the termination prover Mat
hbox[Wal04℄ 
ontributed to this prover winning the string rewriting division of the 2007 termination
ompetition [Mar04℄.The �rst 
ontribution of the present work is a generalization of ar
ti
 termination to termrewriting. We use interpretations given by weighted tree automata. We restri
t to the spe
ial 
aseof automata where ea
h transition fun
tion is of the form (x1, . . . , xn) 7→M0+M1 ·x1+. . .+Mn ·xn.Here, xi are (
olumn) ve
tor variables,M0 is a ve
tor and M1, . . . are square matri
es. Operationsare understood in the semi-ring.Sin
e the max operation is not stri
tly monotoni
 in single arguments, we do not obtain mono-tone interpretations, but only weakly monotone interpretations. These 
annot prove termination,but only top termination, where rewriting steps are only applied at the root of terms. This is arestri
tion but it �ts with the framework of the dependen
y pairs method [AG00℄ that transformsa termination problem to a top termination problem.The se
ond 
ontribution is a generalization from ar
ti
 naturals to ar
ti
 integers, i.e. {−∞}∪Z.Ar
ti
 integers allow e.g. to interpret fun
tion symbols by the prede
essor fun
tion, and thismat
hes the �intrinsi
� semanti
s of some termination problems. There is previous work on poly-nomial interpretations with negative 
oe�
ients [HM04℄. It uses ad-ho
 max operations in severalpla
es. The semi-ring of ar
ti
 integers provides a general framework (under the restri
tion thatthe polynomials are linear).The third 
ontribution is that all de�nitions, theorems and proofs have been formalized with theproof assistant Coq [BC04℄. This extends previous work [KZ08℄ and will be
ome part of the CoLoRproje
t [BDCG+06℄ that gathers formalizations of termination te
hniques and employs them to
ertify termination proofs found automati
ally. In 2007, the 
erti�ed 
ategory of the termination
ompetition was won by the termination prover TPA [Kop06℄ that uses CoLoR.A method to sear
h for ar
ti
 interpretations is implemented for the termination prover Mat
h-box. It works by transformation to a boolean satis�ability problem, and applying a state-of-the-artSAT solver. For several termination problems that 
ould not be solved in last year's termination
ompetition it �nds proofs via ar
ti
 tree automata and the new CoLoR version 
erti�es them.Referen
es[AG00℄ Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependen
y pairs. Theor.Comput. S
i., 236(1-2):133�178, 2000. 42



[BC04℄ Yves Bertot and Pierre Casteran. Intera
tive Theorem Proving and Program Development.Springer, 2004.[BDCG+06℄ Frédéri
 Blanqui, William Delobel, Solange Coupet-Grimal, Sébastien Hinderer, and AdamKoprowski. CoLoR, a Coq library on rewriting and termination. In Eighth InternationalWorkshop on Termination (WST 06'), 2006. http://
olor.loria.fr.[EWZ06℄ Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix interpretations for provingtermination of term rewriting. In Ulri
h Furba
h and Natarajan Shankar, editors, IJCAR,volume 4130 of Le
ture Notes in Computer S
ien
e, pages 574�588. Springer, 2006.[HM04℄ Nao Hirokawa and Aart Middeldorp. Polynomial interpretations with negative 
oe�
ients.In Bruno Bu
hberger and John A. Campbell, editors, AISC, volume 3249 of Le
ture Notes inComputer S
ien
e, pages 185�198. Springer, 2004.[HW06℄ Dieter Hofbauer and Johannes Waldmann. Termination of string rewriting with matrix in-terpretations. In Frank Pfenning, editor, RTA, volume 4098 of Le
ture Notes in ComputerS
ien
e, pages 328�342. Springer, 2006.[Kop06℄ Adam Koprowski. TPA: Termination proved automati
ally. In Frank Pfenning, editor, TermRewriting and Appli
ations, 17th International Conferen
e, RTA 2006, Seattle, WA, USA,August 12-14, 2006, Pro
eedings, volume 4098 of Le
ture Notes in Computer S
ien
e, pages257�266. Springer, 2006. 
urrent information at http://www.win.tue.nl/tpa/.[KZ08℄ Adam Koprowski and Hans Zantema. Certi�
ation of proving termination of term rewritingby matrix interpretations. In Viliam Ge�ert, Juhani Karhumäki, Alberto Bertoni, Bart Pre-neel, Pavol Návrat, and Mária Bieliková, editors, SOFSEM, volume 4910 of Le
ture Notes inComputer S
ien
e, pages 328�339. Springer, 2008.[Mar04℄ Claude Mar
he. Termination 
ompetition. http://www.lri.fr/ mar
he/termination-
ompetition/, 2004.[Wal04℄ Johannes Waldmann. Mat
hbox: A tool for mat
h-bounded string rewriting. In Vin
entvan Oostrom, editor, Pro
. 15th Int. Conf. Rewriting Te
hniques and Appli
ations RTA-98,number 3091 in Le
ture Notes in Comput. S
i., pages 85�94, 2004. 
urrent information athttp://dfa.imn.htwk-leipzig.de/mat
hbox/.[Wal06℄ Johannes Waldmann. Weighted automata for termination of string rewriting. In Workshopon Weighted Automata Theory and Appli
ations (WATA06), 2006.[Wal07℄ Johannes Waldmann. Ar
ti
 termination. In Workshop on Termination (WST07), 2007.http://dfa.imn.htwk-leipzig.de/mat
hbox/methods/ar
ti
.pdf.
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From unweighted to weighted tra
es� alternative proofs �Dietri
h KuskeInstitut für InformatikUniversität LeipzigA large body of theoreti
al 
omputer s
ien
e deals with properties of languages as sets of �nitewords. These words 
an be understood as the sequen
e of events performed by some system. Thismodelling works �ne for sequential systems be
ause of the linear nature of words. Mazurkiewi
z,in 1977, proposed a generalization of words nowadays 
alled Mazurkiewi
z tra
es that allows toalso model some 
on
urren
y. Sin
e its introdu
tion, mu
h work has been devoted to the transferof results on word languages to tra
e languages (
f. the handbook �The book of Tra
es�). Onesu
h result is Kleene's theorem equating the re
ognizable and the rational languages. O
hma«skisu

eeded in transfering this result to tra
e languages showing that the re
ognizable tra
e languagesare pre
isely the 
-rational ones.For sequential systems, it is not just interesting to ask whether a parti
ular word is generated,but also to know the number of di�erent ways it 
an be generated. This question developed intothe theory of weighted automata and formal power series. A fundamental result is S
hützenberger'stheorem from 1961, equating the behaviors of weighted automata with the set of rational formalpower series.These two distin
t generalizations of Kleene's theorem were re-joint by Droste & Gastin in1999 who investigated weighted tra
e automata and formal power series over partially 
ommutingvariables.The theorems by Kleene, by S
hützenberger, by O
hma«ski, and by Droste & Gastin show thatall rational languages, formal power series, tra
e languages, or formal power series over partially
ommuting variables are re
ognizable. All the proofs follow the line of Kleene's proof (namelyshowing the 
losure of re
ognizable obje
ts with respe
t to all rational operations) albeit withnon-trivial additions.In this talk, we present an alternative proof of Droste & Gastin's 
hara
terisation of the behaviorof weighted tra
e automata. The main novelty lies in the fa
t that we derive their result as a
orollary to O
hma«ski's theorem. In other words, we derive a result on weighted tra
e automatafrom a theorem on unweighted tra
e automata.

44



Weighted tree automata with dis
ountingEleni Mandrali and George RahonisDepartment of Mathemati
s, Aristotle University of Thessaloniki54124 Thessaloniki, Gree
e
{elemandr,grahonis}�math.auth.grWe introdu
e the model of weighted top-down tree automata (WTTA for short) with dis
ounting.These automata are usual weighted top-down tree automata, where the dis
ounted weight of a runon an input tree, is 
omputed by dis
ounting the weight of every node a

ording to its distan
e fromthe root of the tree. More pre
isely, for a ranked alphabet Σ and a semiring K, a Φ-dis
ountingover Σ and K is a family Φ = (Φσ)σ∈Σ of endomorphisms of K indexed by the alphabet Σ. Givena WTTA M over Σ and K, a tree t ∈ TΣ, and a run rt of M over t, the weight of every node

w ∈ dom(rt) is dis
ounted by Φ a

ording to the path from the root of t to w. In this way, the nodeso

urring at the same level of the tree get a weight dis
ounted by the same grade. We show thatthe 
lass KΦ−rec 〈〈TΣ〉〉 of formal power tree series re
ognized by WTTA over a ranked alphabet
Σ and a 
ommutative semiring K with a Φ-dis
ounting, 
oin
ides with the 
lass of Φ-rational treeseries over Σ and K, i.e. a Kleene theorem. Here, for our Φ-rational tree operations, it su�
esto in
orporate the Φ-dis
ounting in top-
on
atenation and in α-
on
atenation. By 
onsidering theidentity dis
ounting, we obtain as a spe
ial 
ase the Kleene theorem of Droste, Pe
h and Vogler[2℄. Furthermore, by applying our result to monadi
 ranked alphabets (i.e. ranked alphabets withsymbols of rank 0 and 1), we get the Kleene-S
hützenberger theorem of Droste and Kuske [1℄ forskew word series.Then, we introdu
e a weighted MSO logi
 with dis
ounting for �nite trees. In fa
t, we usethe logi
s of Droste and Vogler [4℄ and we in
orporate the dis
ounting only in the semanti
s ofthe �rst order universal quanti�
ations. For this logi
, we prove the expressive equivalen
e of Φ-re
ognizable tree series with two fragments of Φ-de�nable senten
es. The �rst one 
alled restri
tedis semanti
ally determined. The latter 
alled almost existential is synta
ti
ally de�ned, and for theequivalen
e result we require that the additive monoid of the underlying semiring is lo
ally �nite.For our 
onstru
tions it is 
onvenient to work with weighted bottom-up tree automata withdis
ounting. Trivially the 
lasses of the behaviors of the two models 
oin
ide.In the se
ond part of the paper, we 
onsider weighted Muller tree automata with dis
ountingover the max-plus Rmax and the min-plus Rmin semirings. By using the dis
ounting parameters, weget rid of the 
ompleteness axioms of the underlying semirings required in [5℄. Then, we enri
h ourweighted MSO logi
s (for �nite trees) with the formulas x = y and ∀X �ϕ, but we still dis
ount thesemanti
s of the weighted formulas only in the �rst order universal quanti�
ations. We show thatthe 
lass of dis
ounted Muller re
ognizable tree series 
oin
ides with two fragments of weightedsenten
es of our logi
s. The restri
ted whi
h is de�ned semanti
ally and the in
omplete universalwhi
h is de�ned synta
ti
ally. If we restri
t ourselves to monadi
 alphabets, then we 
an drop these
ond order universal quanti�ers from our logi
. Therefore, we obtain as a spe
ial 
ase a re
entresult of Droste and Rahonis [3℄ 
onne
ting dis
ounted ω-re
ognizable word series with in�nitaryseries de�nable by dis
ounted MSO-senten
es. This fa
t highlights the robustness of the theory ofdis
ounted weighted logi
s for in�nite words and trees.Referen
es1. M. Droste, D. Kuske, Skew and in�nitary formal power series, Theoret. Comput. S
i. 366(2006) 199-227.2. M. Droste, C. Pe
h, H. Vogler, A Kleene theorem for weighted tree automata, Theory of ComputingSystems 38(2005) 1-38.3. M. Droste, G. Rahonis, Weighted automata and weighted logi
s with dis
ounting, in: Pro
eedings ofCIAA 2007, LNCS 4783(2007) 73-84 45



4. M. Droste, H. Vogler, Weighted tree automata and weighted logi
s, Theoret. Comput. S
i. 366(2006)228-247.5. G. Rahonis, Weighted Muller tree automata and weighted logi
s, J. Autom. Lang. Comb., in press.
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Weighted Logi
s for Nested Words andAlgebrai
 Formal Power SeriesChristian MathissenInstitut für Informatik, Universität LeipzigD-04009 Leipzig, Germanymathissen�informatik.uni-leipzig.deModel 
he
king of �nite state systems has be
ome an established method for automati
 hardwareand software veri�
ation and led to numerous veri�
ation programs used in industrial appli
ation.In order to verify re
ursive programs it is ne
essary to model them as pushdown systems rather than�nite automata. This has motivated Alur and Madhusudan [3, 4℄ to de�ne the 
lasses of nestedword languages and visibly pushdown languages, whi
h is a proper sub
lass of the 
ontext-freelanguages and ex
eeds the regular languages. These 
lasses gained huge interest and set a startingpoint for a new resear
h �eld, see e.g. [1, 2, 5, 6℄ among many others.The goal of this 
ontribution will be: 1. to introdu
e a quantitative automaton model and aquantitative logi
 for nested words being equally expressive, 2. to establish a 
onne
tion betweennested words and series-parallel-biposets whi
h have been studied by Ésik & Németh [9℄ andHashigu
hi et. al. (e.g. [10℄) and 3. to give a 
hara
terization algebrai
 formal power series bymeans of weighted logi
.On order to be able to model quantitative properties of systems, extensions of existing modelsto quantitative models as for example weighted automata have been investigated. We introdu
eand investigate weighted nested word automata whi
h we propose as a quantitative model forsequential programs with re
ursive pro
edure 
alls. Due to the fa
t that we de�ne them overarbitrary semirings they are very �exible and 
an e.g. model probabilisti
 or sto
hasti
 systems.As the �rst main result, we 
hara
terize their expressiveness using weighted logi
 as introdu
ed byDroste and Gastin [8℄, generalizing a result of Alur and Madhusudan.To show our result we establish a new 
onne
tion between so-
alled series-parallel-biposets andnested words. The 
lass of sp-biposets forms the free bisemigroup whi
h has been investigated byHashigu
hi et. al. (e.g. [10℄) and a language theory for series-parallel-biposets has been developedby Ésik and Németh [9℄. We anti
ipate that the 
onne
tion between nested words and sp-biposets
an be utilized to obtain further results.Using proje
tions of nested word series and applying the above mentioned result we obtain these
ond main result, a 
hara
terization of algebrai
 formal power series in terms of weighted logi
generalizing a result of Lautemann, S
hwenti
k and Thérien [13℄ for 
ontext-free languages.Referen
es1. R. Alur, S. Chaudhuri, and P. Madhusudan. A �xpoint 
al
ulus for lo
al and global program �ows.In Pro
. of the 33rd ACM POPL, Charleston, pages 153�165. ACM, 2006.2. R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congruen
es for visibly pushdown lan-guages. In Pro
. of the 32nd ICALP, Lisbon, volume 3580 of Le
ture Notes in Computer S
ien
e, pages1102�1114, 2005.3. R. Alur and P. Madhusudan. Visibly pushdown languages. In Pro
. of the 36th STOC, Chi
ago, pages202�211. ACM, 2004.4. R. Alur and P. Madhusudan. Adding nesting stru
ture to words. In Pro
. of the 10th DLT, SantaBarbara, volume 4036 of Le
ture Notes in Computer S
ien
e, pages 1�13, 2006.5. M. Arenas, P. Bar
eló, and L. Libkin. Regular languages of nested words: Fixed points, automata, andsyn
hronization. In Pro
. of the 34th ICALP, Wro
law, volume 4596 of Le
ture Notes in ComputerS
ien
e, pages 888�900, 2007.6. V. Bárány, C. Löding, and O. Serre. Regularity problems for visibly pushdown languages. In Pro
. ofthe 23rd STACS, Marseille, volume 3884 of Le
ture Notes in Computer S
ien
e, pages 420�431, 2006.47



7. N. Chomsky and M.P. S
hützenberger. The algebrai
 theory of 
ontext-free languages. In ComputerProgramming and Formal Systems, pages 118�161. Amsterdam, North-Holland, 1963.8. M. Droste and P. Gastin. Weighted automata and weighted logi
s. Theoreti
al Computer S
ien
e,380:69�86, 2007.9. Z. Ésik and Z. L. Németh. Higher dimensional automata. Journal of Automata, Languages andCombinatori
s, 9(1):3�29, 2004.10. K. Hashigu
hi, S. I
hihara, and S. Jimbo. Formal languages over free bionoids. Journal of Automata,Languages and Combinatori
s, 5(3):219�234, 2000.11. W. Kui
h. Semirings and formal power series. In G. Rozenberg and A. Salomaa, editors, Word,Language, Grammar, volume 1 of Handbook of Formal Languages, 
hapter 9, pages 609�677. Springer-Verlag, 1997.12. W. Kui
h and A. Salomaa. Semirings, Automata, Languages, volume 5 of EATCS Monographs onTheoreti
al Computer S
ien
e. Springer, 1986.13. C. Lautemann, T. S
hwenti
k, and D. Thérien. Logi
s for 
ontext-free languages. In Pro
. of the 8thCSL, Kazimierz, volume 933 of Le
ture Notes in Computer S
ien
e, pages 205�216, 1994.14. C. Mathissen. De�nable transdu
tions and weighted logi
s for texts. In Pro
. of the 11th DLT, Turku,volume 4588 of Le
ture Notes in Computer S
ien
e, pages 324�336, 2007.
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On the expressive power of a weighted µ-
al
ulusIngmar Meine
keInstitut für Informatik, Universität Leipzig04009 Leipzig, Germanymeine
ke�informatik.uni-leipzig.deThe µ-
al
ulus (
f. [1, 6℄) is a well-established and important notion in 
omputer s
ien
e. It 
om-bines advantages both of logi
 (a well-stru
tured notation) and of automata (algorithmi
 problemsare solved by 
omputing �xed points). Di�erent temporal logi
s are a fragment of the µ-
al
ulus.In re
ent years, multi-valued and weighted logi
s attra
ted more and more interest. A weightedmonadi
 se
ond-order logi
 over �nite words was introdu
ed [3℄. Here, weights from an arbitrary
ommutative semiring are appended. A fragment of this logi
 turned out as semanti
ally equivalentto the behaviors of weighted �nite automata. But for the des
ription of temporal properties theuse of modal operators seems more reasonable. Several papers (
f. [5, 2, 4, 7℄) deal with su
h multi-valued temporal logi
s and atta
k the model 
he
king problem in a multi-valued setting. Thevalues are taken from 
ertain �nite distributive latti
es L (De Morgan algebras). Then multi-valuedKripke stru
tures are 
onsidered, i.e., atomi
 propositions in the states and/or the transitions of thestru
ture take values in L. For several temporal logi
s and the µ-
al
ulus over these multi-valuedKripke stru
tures the model 
he
king problem was solved (either by a redu
tion to the 
lassi
al
ase or by atta
king it dire
tly).Here, we turn our attention to the expressive power. We de�ne a weighted µ-
al
ulus on �niteand in�nite words and show the 
oin
iden
e of a 
onjun
tion-free fragment with the 
lass of ω-rational formal power series. Hereby, the weights are taken from a distributive 
omplete latti
e.Moreover, we dis
uss for whi
h other semirings the result may 
arry over.Referen
es1. A. Arnold and D. Niwi«ski. Rudiments of µ-
al
ulus, volume 146 of Studies in Logi
 and the Founda-tions of Mathemati
s. North-Holland, 2001.2. G. Bruns and P. Godefroid. Model 
he
king with multi-valued logi
s. In Pro
eedings of ICALP 2004(31st International Colloquium on Automata, Languages and Programming), volume 3142 of Le
t.Notes in Comp. S
., pages 281�293. Springer, 2004.3. M. Droste and P. Gastin. Weighted automata and weighted logi
s. Theoreti
al Computer S
ien
e,380:69�86, 2007.4. G. E. Fainekos. An introdu
tion to multi-valued model 
he
king. Te
hni
al Report MS-CIS-05-16,Dept. of CIS, University of Pennsylvania, September 2005.5. A. Gur�nkel and M. Che
hik. Multi-valued model 
he
king via 
lassi
al model 
he
king. In Pro
eedingsof CONCUR 2003, volume 2761, pages 266�280. Springer, 2003.6. D. Kozen. Results on the propositional mu-
al
ulus. Theoreti
al Computer S
ien
e, 27:333�354, 1983.7. O. Kupferman and Y. Lustig. Latti
e automata. In Pro
eedings of Veri�
ation, Model Che
king, andAbstra
t Interpretation, 8th International Conferen
e, VMCAI 2007, Ni
e, Fran
e, volume 4349 ofLe
t. Notes in Comp. S
., pages 199�213. Springer, 2007.
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A Kleene-S
hützenberger Theoremfor Weighted Timed AutomataKarin Quaas and Manfred DrosteInstitut für InformatikUniversität Leipzig, 04109 Germany
{quaas,droste}�informatik.uni-leipzig.deDuring the last years, weighted timed automata (wta) have re
eived mu
h interest in the real-time 
ommunity. Weighted timed automata are an extension of timed automata [2℄ and allow toassign weights (
osts) to both lo
ations and edges. This model has been introdu
ed independentlyby Alur et al. [3℄ and Behrmann et al. [4℄. It allows the modelling of 
ontinuous 
onsumption ofresour
es, and thus, enables to represent e.g. s
heduling and planning problems. Consequently,there has been mu
h resear
h on problems as optimal rea
hability and model 
he
king [8℄, [10℄, [1℄.However, there has been no algebrai
 
hara
terization of the behaviour of wta so far. We attemptto �ll this gap by providing a Kleene-S
hützenberger theorem for wta [14℄. We apply the theoryof weighted �nite automata [6℄, [16℄, [15℄, and de�ne wta over a semiring, resulting in a modelthat subsumes previous de�nitions in the literature, e.g. [3℄, where 
osts for rea
hing a lo
ation are
omputed by taking the in�mum of the running weights of all runs, or [9℄, a multi-pri
ed variant ofa wta. For giving a Kleene-S
hützenberger theorem, we 
ombine the approa
h of S
hützenberger[17℄ as well as a re
ent approa
h of a Kleene-type theorem for (unweighted) timed automata byBouyer and Petit [11℄. Our main result also implies Kleene-type theorems for several sub
lassesof wta, i.e., weighted �nite automata, timed automata, timed automata with stopwat
h observers[12℄.Currently, we are investigating whether there is a Bü
hi-type theorem for wta, i.e., are wtaexpressively equivalent to some weighted timed version of monadi
 se
ond-oder logi
. For this weare trying to 
ombine methods of Wilke [18℄, Droste and Gastin [13℄ and Bouyer [7℄.Referen
es1. R. Alur, M. Bernadsky, and P. Madhusudan. Optimal rea
hability in weighted timed games. In J. Díaz,J. Karhumäki, A. Lepistö, and D. Sannella, editors, ICALP, volume 3142 of LNCS, pages 122�133.Springer, 2004.2. R. Alur and D. L. Dill. A theory of timed automata. Theoreti
al Computer S
ien
e, 126(2):183�235,1994.3. R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata. In Benedettoand Sangiovanni-Vin
entelli [5℄, pages 49�62.4. G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn, and F. Vaandrager. Minimum-
ost rea
hability for pri
ed timed automata. In Benedetto and Sangiovanni-Vin
entelli [5℄, pages 147�161.5. M. D. Di Benedetto and A. Sangiovanni-Vin
entelli, editors. Hybrid Systems: Computation and Con-trol, 4th International Workshop, HSCC 2001, Rome, Italy, Mar
h 2001, Pro
eedings, volume 2034 ofLNCS. Springer, 2001.6. J. Berstel and C. Reutenauer. Rational Series and their Languages. Springer-Verlag New York, In
.,New York, NY, USA, 1988.7. P. Bouyer. A logi
al 
hara
terization of data languages. Information Pro
essing Letters, 84(2):75�85,O
tober 2002.8. P. Bouyer, T. Brihaye, V. Bruyère, and J.-F. Raskin. On the optimal rea
hability problem on weightedtimed automata. Formal Methods in System Design, 31(2):135�175, O
tober 2007.9. P. Bouyer, E. Brinksma, and K. G. Larsen. Optimal in�nite s
heduling for multi-pri
ed timed au-tomata. Formal Methods in System Design, 2007. To appear.10. P. Bouyer, K. G. Larsen, and N. Markey. Model-
he
king one-
lo
k pri
ed timed automata. In H. Seidl,editor, FoSSaCS, volume 4423 of LNCS, pages 108�122. Springer, 2007.50



11. P. Bouyer and A. Petit. A Kleene/Bü
hi-like theorem for 
lo
k languages. J. Autom. Lang. Comb.,7(2):167�186, 2001.12. T. Brihaye, V. Bruyère, and J.-F. Raskin. On model-
he
king timed automata with stopwat
h ob-servers. Inf. Comput., 204(3):408�433, 2006.13. M. Droste and P. Gastin. Weighted automata and weighted logi
s. Theor. Comput. S
i., 380(1-2):69�86, 2007.14. M. Droste and K. Quaas. A Kleene-S
hützenberger theorem for weighted timed automata. In R. Ama-dio, editor, FoSSaCS 2008, volume 4962 of LNCS, pages 142�156. Springer, 2008. To appear.15. W. Kui
h and A. Salomaa. Semirings, Automata, Languages, volume 5 of EATCS Monographs onTheoreti
al Computer S
ien
e. Springer-Verlag, Berlin, 1986.16. A. Salomaa and M. Soittola. Automata-Theoreti
 Aspe
ts of Formal Power Series. Springer New York,1978.17. M. P. S
hützenberger. On the de�nition of a family of automata. Information and Control, 4:245�270,1961.18. T. Wilke. Spe
ifying Timed State Sequen
es in Powerful De
idable Logi
s and Timed Automata. InH. Langmaa
k, W.-P. de Roever, and J. Vytopil, editors, Formal Te
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Re
ognizability of Iterative Pi
ture LanguagesSibylle S
hwarz and Renate WinterInstitut für InformatikMartin-Luther-Universität Halle-Wittenberg, Germany[s
hwarzs,winter℄�informatik.uni-halle.dePi
ture languages generated by an iterative pro
ess o

ur in image 
ompression [11℄ and the
reation of fra
tal pi
tures [6℄.Every letter (m,n) in the alphabet Ak = {0, . . . , k− 1}2 is interpreted as a position in a k× k-square and every word w ∈ A∗
k as position

Pos(w) =





|w|−1
∑

i=0

π1(wi)k
|w|−i−1,

|w|−1
∑

i=0

π2(wi)k
|w|−i−1



in a square of side k|w| where |w| is the length of the word |w|.For a semiring W , we will 
onsider pi
tures with "
olors" in W , i.e. fun
tions p : {0, . . . ,m} ×
{0, . . . , n} → W . Then every W -valued word language L : A∗

k → W (also known as formal powerseries [1℄) de�nes a pi
ture language
picture(L) = {pi : {0, . . . , ki − 1}2 →W | i ∈ N}where for every i ∈ N and every (m,n) ∈ {0, . . . , ki − 1}2

pi(m,n) = L
(

Pos
−1(m,n)

)

,i.e. pi(m,n) is the value in L of the word addressing position (m,n). Pi
ture languages picture(L)that are de�ned by a word language L we 
all iterative.A W -valued word language L : A∗
k → W is re
ognizable if there is a W -weighted automaton(WFA) A su
h that L is the behavior of A. If the semiring W is lo
ally �nite (i.e. every �nitelygenerated subsemiring of W is �nite) then for every W -re
ognizable word language L : A2

k → W ,all pi
tures in picture(L) have 
olors from a �nite subset of W .Re
ognizability of pi
ture languages over a �nite set of 
olors is de�ned by tiling systems [5℄and 
oin
ides with re
ognizability of pi
ture languages by several other 
omputational devi
es(nondeterministi
 4-way-automata, on-line tessellation automata) and de�nability in existentialmonadi
 se
ond order logi
.Our main result is the following theorem:Theorem 1. For every lo
ally �nite semiring W and every W -re
ognizable word language L :
A2

k →W , the pi
ture language picture(L) is re
ognizable.This is proven by a 
onne
tion to two-dimensional Lindenmayer systems [8℄, for whi
h re
ogniz-ability of the generated pi
ture languages was shown in [9℄.Using a result in [7℄, we present a non-re
ognizable word language L su
h that the pi
turelanguage picture(L) is re
ognizable. Hen
e the re
ognizability of picture(L) does not imply there
ognizability of the word language L.The RGB model [3℄ is a standard 
olor format for digital images. Every 
olor is representedby a triple (r, g, b) (intensities of 
olors red, green, blue). The set of all 
olors in the RGB modelforms a lo
ally �nite MV-algebra [2℄ with operations de�ned in [10℄. Hen
e by [4℄ this algebra hassemiring a redu
t (with the operations of pointwise maximum and trun
ated addition) that 
anserve as weight semiring for weighted automata. By our theorem, the set of all pi
tures generatedby a WFA-en
oding [11℄ of an RGB image is a re
ognizable pi
ture language.52
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De
omposition of Weighted Multioperator Tree AutomataTorsten Stüber1,⋆, Heiko Vogler1, Zoltán Fülöp21Department of Computer S
ien
e, Te
hnis
he Universität DresdenD-01062 Dresden, Germany
{stueber,vogler}�t
s.inf.tu-dresden.de2Department of Foundations of Computer S
ien
e, University of SzegedÁrpád tér 2., H-6720 Szeged, Hungaryfulop�inf.u-szeged.huWeighted multioperator tree automata (for short: wmta) were introdu
ed in [16℄; they are �nite-state bottom-up weighted tree automata in whi
h the transition weights are �nite sums of poly-nomials over variables, operations, and 
onstants. The operations are taken from a multiopera-tor monoid (for short: M-monoid) [15, 16℄, whi
h is an algebrai
 stru
ture (A,+, 0, Ω) su
h that

(A,+, 0) is a 
ommutative monoid and (A,Ω) is an Ω-algebra. If the operations in Ω distributeover + and + is idempotent, then an M-monoid is 
alled distributive Ω-magma in [4℄.Here we 
onsider a simpli�ed version of wmta (hen
eforth also 
alled wmta) in whi
h thetransition weights are operations taken from Ω (rather than �nite sums of polynomials over Ω).More pre
isely, given a wmta M , the weight of the transition at some k-ary input symbol σ withsome state behaviour (q1 · · · qk, q) is a k-ary operation ω ∈ Ω; let us denote this operation by
µk(σ)q1···qk,q. Then, for every run r of M on some input tree t ∈ TΣ and every position w of t, theweight of r on t at w, denoted by [[r]]M,t(w) ∈ A, is obtained by applying the operation µk(σ)q1···qk,qto the k elements [[r]]M,t(w.1), . . . , [[r]]M,t(w.k) ∈ A where σ is the label of t at w and (q1 · · · qk, q)is the state behaviour at w pres
ribed by r. All in all, M re
ognizes the tree series [[M ]] ∈ A〈〈TΣ〉〉de�ned for every t ∈ TΣ su
h that ([[M ]], t) is the sum of the values [[r]]M,t(ε) taken over all runs ron t. We denote the 
lass of all wmta re
ognizable tree series over A by BOT (A).Wmta have been investigated in [18, 20℄ where it was shown that they 
an easily simulateweighted tree automata over semirings [1, 3, 14, 8, 5℄ and tree series transdu
ers over semirings [17,7, 11, 9, 19, 21℄ (for surveys on weighted tree automata and tree series transdu
ers 
f. [8, 12℄). In[10℄ it was proved that the wmta re
ognizable tree series over some M-monoid A are exa
tly therational tree series over A.In this paper we prove three main results. The �rst main result is the following 
hara
terizationof BOT (A):

BOT (A) = REL;FTA;HOM(A)whereREL and FTA are the 
lasses of relabeling tree transformations and fta tree transformations,respe
tively (as de�ned in [6℄); an fta tree transformation is a partial identity on a re
ognizable treelanguage; HOM(A) is the 
lass of all tree series whi
h are re
ognizable by homomorphism wmtaover A, where a homomorphism wmta is a wmta with exa
tly one state whi
h is also �nal; thesemi
olon in the right hand side expression denotes the usual 
omposition of relations. This resultgeneralizes the de
omposition of generalized sequential ma
hine mappings [22℄ (also 
f. Theorem 4.1of [2℄) and of bottom-up tree transdu
ers (
f. Theorem 3.5 of [6℄).The se
ond main result of this paper is derived from the �rst one. It shows the following
hara
terization of the 
lass p-BOT (S) of tree series transformations 
omputed by polynomialbottom-up tree series transdu
ers (for short: polynomial bottom-up tst) over some semiring S:
p-BOT (S) = REL;FTA;HOM(S)where HOM(S) is the 
lass of tree series transformations 
omputed by bottom-up homomorphismtst; a tree series transformation over S is a mapping ϕ : TΣ → S〈〈T∆〉〉. Polynomial bottom-uptst were investigated in, e.g., [7, 21, 12℄. We note that a similar 
hara
terization has been proved
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in Theorem 5.7 of [7℄: p-BOT (S) = QREL(S); b-HOM(S), where QREL(S) and b-HOM(S)denote the 
lasses of tree series transformations 
omputed by bottom-up �nite state relabeling tstand by Boolean bottom-up homomomorphism tst, respe
tively. The di�eren
e between these two
hara
terizations is the fa
t that in REL;FTA;HOM(S) the 
lasses REL and FTA 
ontain treetransformations, i.e., mappings of the type TΣ → P(T∆), and the weights only o

ur in the third
lass (viz. HOM(S)); in 
ontrast to this, in QREL(S); b-HOM(S) the semiring values are solely
omputed by QREL(S) and the Boolean-valued bottom-up homomomorphism tst only produ
esthe values 0 or 1. This organization of weights in QREL(S); b-HOM(S) for
ed the 
ombinationof the relabeling and the state 
he
king whi
h were originally separated. Also we note that, forthe Boolean semiring, our se
ond main result is exa
tly the 
hara
terization of BOT proved inTheorem 3.5 of [6℄.The third main result of our paper is also derived from the �rst one, and it shows a 
hara
teri-zation of the 
lass Rec(Σ,S) of tree series whi
h are re
ognizable by weighted tree automata oversome semiring S:
Rec(Σ,S) = PROJ(Σ,S)(LLOC),where LLOC is the 
lass of lo
al tree languages (
f. Se
tion 8 of [13℄), and PROJ(Σ,S) is the
lass of tree series transformations whi
h are 
omputed by bottom-up proje
tion tst. We notethat, for the Boolean semiring, our third main result is exa
tly the well-known 
hara
terization ofre
ognizable tree languages in terms of proje
tions of lo
al tree languages.Referen
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