WS 2010/11

1. Übung

Fakultät Verkehrswissenschaften Fachrichtung Verkehrsingenieurwesen

Zeitraum: 18.10. bis 29.10.2010

Aufgabe 1

Beschreiben Sie die folgenden Tätigkeiten in Form eines Algorithmus. Dafür können Sie ähnliche Notationsformen wie in der Vorlesung verwenden (z.B. als Ablaufplan).

- Das Vertauschen der Inhalte von zwei gefüllten Flaschen (dabei darf eine dritte leere Flasche zur Hilfe benutzt werden).
- Der Wechsel von Sommer- auf Winterräder an einem Auto (jedes Rad ist mit jeweils fünf Muttern befestigt).
- Das Auffinden eines Eintrages in einem Telefonbuch.
- Ein Dozent hat auf seinem Schreibtisch einen großen, unsortierten Stapel Klausuren zur Korrektur liegen. Er möchte herausfinden, ob zwei Studenten an der Klausur teilgenommen haben, die den gleichen Vornamen haben.

Aufgabe 2

Machen Sie sich die folgenden Begriffe bzw. Definitionen inhaltlich klar: Objektsprache, Metasprache, Alphabet, Wort, Konkatenation, formale Sprache, Komplexprodukt, L^* (L sei formale Sprache).

Sei $\Sigma = \{1, 2, a, b\}$. Geben Sie einige Wörter sowie einige Sprachen über Σ an.

Aufgabe 3

Gegeben seien die Sprachen $L_1 = \{b, bc\}$, $L_2 = \{a\}$, $L_3 = \{ca, a\}$. Berechnen Sie die folgenden Ausdrücke:

- $L_1 \cup L_2 \cup L_3$,
- L_2^* ,
- $L_1 \cdot L_3$,
- $L_2^* \cdot L_3$,

- $(L_1 \cup L_2) \cdot L_3$
- $(L_1 \cup L_3)^*$

Bilden Sie ähnliche Ausdrücke (also auf Grundlage der Sprachen L_1 , L_2 und L_3) für die folgenden Sprachen:

- $\{aaa, aaca\},$
- $\{baca, baa, bcaca, bcaa\}$
- Die Menge aller Wörter über dem Alphabet $\{a,c\}$, in denen jedes c von einem a gefolgt wird, also $\{\varepsilon, a, aa, ca, aaa, caa, aca, aca, caca, \ldots\}$.

Aufgabe 4 (Zusatz)

- Gibt es einen Unterschied zwischen den Sprachen \emptyset (leere Sprache) und $\{\varepsilon\}$ (Sprache mit leerem Wort)?
- Sei L eine beliebige Sprache. Was ist dann $L \cdot \emptyset$ und $L \cdot \{\varepsilon\}$?
- Sei L eine Sprache die n Wörter beinhaltet. Weiterhin sei L' eine Sprache mit m Wörtern. Was können Sie über die Anzahl der Wörter in $L \cdot L'$ aussagen?