Lehrstuhl Grundlagen der Programmierung Prof. Dr.-Ing. H. Vogler / Dr.-Ing. L. Rüdiger SS 2011

1. Übung

Fakultät Verkehrswissenschaften Fachrichtung Verkehrsingenieurwesen

Zeitraum: 11. bis 21.04.2011

Aufgabe 1: Ausführen von AM₀-Programmen

(a) Folgende linearisierte Übersetzung $prog_0$ sei gegeben:

1:	LIT 1;	7:	JMC 17;	13:	LIT 1;
2:	STORE 2;	8:	LOAD 2;	14:	SUB;
3:	READ 1;	9:	LOAD 1;	15:	STORE 1;
4:	LOAD 1;	10:	MUL;	16:	JMP 4 ;
5:	LIT 1;	11:	STORE 2;	17:	WRITE 2;
6:	GT;	12:	LOAD 1;		

Berechnen Sie $\mathcal{P}[prog_0](2)$ durch Ablaufenlassen der AM_0 .

Dokumentieren Sie den Zustand der AM_0 nach Ausführung jedes Befehls.

(b) Gegeben sei das folgende AM_0 -Programm $prog_0$:

1:	READ 1;	4:	GT;	7:	LIT 2;	10:	JMP 2;
2:	LOAD 1;	5:	JMC 11;	8:	DIV;		
3:	LIT 0;	6:	LOAD 1;	9:	STORE 1;		

Führen Sie $prog_0$ auf der AM_0 mit der Anfangskonfiguration $(1, \varepsilon, [\], 1, \varepsilon)$ schrittweise aus, bis eine Endkonfiguration erreicht ist.

Aufgabe 2: Übersetzung von C_0 -Ausdrücken

Gegeben sei die folgende, durch die Übersetzung des Deklarationsteiles eines C_0 -Programms entstandene, Symboltabelle:

Übersetzen Sie die folgenden Ausdrücke in AM_0 -Befehlsfolgen:

- \bullet a * x + z
- y * 2 z/a
- (a * x + z) * 3
- x * (z y%2)

Aufgabe 3: Übersetzung und Ausführung eines Programms

Gegeben sei das folgende C_0 -Programm filter:

```
#include <stdio.h>
int main()
{ int x;

   scanf("%i",&x);
   while(x!=0)
      { if (x%3 == 0) printf("%d",x);
        scanf("%i",&x);
      }
   return 0;
}
```

- (a) Erzeugen Sie aus dem C_0 -Programm filter ein AM_0 -Programm $filter_0$ durch Übersetzen mittels Transformationskalkül \underline{trans} .
 - **Hinweis:** Erzeugen Sie zunächst ein Programm $bfilter_0$ mit baumstrukturierten Adressen und daraus durch Linerisierung der Adressen das Programm $filter_0$.
- (b) Berechnen Sie $\mathcal{P}[\![filter_0]\!]$ (6.4.3.0) durch Ablaufenlassen auf der AM_0 . **Hinweis:** Der Punkt zwischen 6, 4, 3 und 0 ist **kein** Dezimalpunkt, sondern das Trennzeichen zwischen den eingegebenen Werten!