
Preface

On November 29, 2005 the Research Training Group (DFG-Graduiertenkolleg GK 334)
�Speci�cation of discrete processes and systems of processes by operational models and
logics� at the TU Dresden organized the workshop

Methods of Category Theory in Software Engineering

in Dresden. Its scope can be characterized by the following keywords:
• Category Theory applied in Automata Theory
• Graph Transformations in a Category setting
• Dynamic, Modal, and Higher-order Logics.

This technical report contains the abstracts of the scienti�c talks which were presented by

H. Ehrig B. Jacobs H.-J. Kreowski B. Krieg-Brückner
Chr. Lüth T. Mossakowski J.J.M.M. Rutten L. Schröder.

The workshop was organized in the honour of Prof.Dr.Horst Reichel, who will retire
end of March 2006 from his position as professor for algebraic and logical foundations of
computer science at TU Dresden.

Horst Reichel has been an active member of our Research Training Group from its
inception in 1997 to the present day. He has greatly contributed to the success of the
group, not only by supervising several Ph.D. students, but also by strongly in�uencing the
research direction of the group and by providing invaluable advice both to the students
and to his colleagues. We will strongly miss his fruitful contributions to our scienti�c
discussions, and his help in many di�erent areas.

All members of the Research Training Group wish Horst Reichel a long and happy
retirement, �lled with all the things he has always been wanting to do (but couldn't since
he had to go to our Tuesday seminars).

Dresden, November 29, 2005
Franz Baader Manfred Droste Bernhard Ganter
Ste�en Hölldobler Dietrich Kuske Reinhard Pöschel
Michael Thielscher Heiko Vogler
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Programme

1





Timetable
09.00 09.15 H. Vogler Opening

09.15 09.50 J. Rutten �On Stream Functions and Circuits�
09.50 10.25 H.-J. Kreowski �A Categorial Approach to Automata�
10.25 11.00 � Co�ee break

11.00 11.35 C. Lüth �Modular Modelling with Monads�
11.35 12.10 T. Mossakowski �Monad-independent Logic for

Computational E�ects�
12.10 14.00 � Lunch break

14.00 14.35 H. Ehrig �Adhesive High-Level Replacement Systems:
A New Categorical Framework for
Graph Transformation�

14.35 15.10 B. Jacobs �Automata and Regular Languages�
15.10 15.35 � Co�ee break

15.40 16.15 L. Schröder �Coalgebraic Modal Logic�
16.15 17.00 � Break

17.00 18.00 � Laudatio
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Adhesive High-Level Replacement Systems:
A New Categorical Framework for Graph Transformation

Hartmut Ehrig

Technical University of Berlin
Berlin

Germany

ehrig@cs.tu-berlin.de

The theory of graph transformations is well-established since more than 30 years with
several applications in theory and applications of Computer Science and related areas.
Several variants of transformation systems based on di�erent notions of graphs, Petri nets
and algebraic speci�cations have been studied since about 15 years leading to the concept of
high-level replacement (HLR) systems. In this lecture we introduce adhesive HLR systems
as a new categorical framework for graph transformation in the double pushout (DPO)
approach, which combines the well-known concept of HLR systems with the new concept
of adhesive categories introduced by Lack and Sobocinski.

We show that most of the HLR properties, which had been introduced to generalize
some basic results from the category of graphs to high-level structures, are valid already
in adhesive HLR categories. This leads to a smooth categorical theory of HLR systems
which can be applied to a large variety of graphs and other visual models. As a main new
result in a categorical framework we show the Critical Pair Lemma for the local con�uence
of transformations. Moreover we present a new version of embeddings and extensions for
transformations in our framework of adhesive HLR systems.

A detailed presentation of the classical algebraic theory of graph transformation systems
and the new theory of adhesive HLR systems and typed attributed graph transformation
systems is given in the new book [1].

References
[1] H. Ehrig, K. Ehrig, U. Prange, and G. Täntzer. Fundamentals of Algebraic Graph

Transformation. EATCS Monographs in TCS. Springer, 2005.
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Automata and Regular Languages

Bart Jacobs

Institute for Computing and Information Sciences
Radboud University Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

www.cs.ru.nl/B.Jacobs

The talk reviews the classical theory of deterministic automata and regular languages
from a categorical perspective. The basis is formed by Rutten's description of the
Brzozowski automaton structure in a coalgebraic framework. We enlarge the framework
to a so-called bialgebraic one, by including algebras together with suitable distributive laws
connecting the algebraic and coalgebraic structure of regular expressions and languages.
This culminates in a reformulated proof of Kozen's completeness result, which can be seen
as a complete axiomatisation of observational equivalence (bisimilarity) on regular expres-
sions. We suggest that this situation is paradigmatic for (theoretical) computer science as
the study of �generated behaviour�.
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A Categorial Approach to Automata

Hans-Jörg Kreowski

Fachbereich Mathematik und Informatik
Universität Bremen

Postfach 33 04 40, D-28334 Bremen

kreo@informatik.uni-bremen.de

Introduction
Various variants of automata have played prominent roles in several areas of computer
science in the last ten to twenty years. In form of state charts, they are important kinds
of UML diagrams (see, e.g., [5]). They provide as labelled transition systems the semantic
foundation of concurrency and communication. Hybrid automata are used to combine dis-
crete and continuous computation (see, e.g., [6]). As generalized sequential machines, they
translate input languages into output languages yielding, for example, a characterization
of recursively enumerable sets as translations of the twin shu�e language (see, e.g., [7]).
And in model checking, automata model systems to be checked (see, e.g., [3]).

Therefore, it may be worthwhile to remember that various attempts were made in the
1970s toward a uni�ed theory of automata in a categorical framework (see, e.g., [1, 2, 4]).
In this paper, the basic ideas are recalled. The hope is that this may enhance the recent
interest in automata.

Automata in a category
As a particular variant of automata in a category, Mealy-automata are introduced with
output words instead of single outputs. The states, inputs and outputs may form just
sets or sets with algebraic, probabilistic or topological structure. The state transitions
and output assignments may be total functions, partial functions, relations, or structure-
preserving mappings of some kind.

To cover this variety, let K be a monoidal category with tensor product ⊗ and a unit
object 1. In many cases, the tensor product is based on the cartesian product of the
underlying sets of the objects at hand. Moreover, it is assumed that K has countable
coproducts that are preserved by the tensor product, i.e. X ⊗∐

i∈I Xi =
∐

i∈I(X ⊗ Xi)
and (

∐
i∈I Xi) ⊗ X =

∐
i∈I(Xi ⊗ X) for all objects X and Xi, i ∈ I, where I is some

countable index set. In many examples, coproducts are given by the disjoint unions of the
underlying sets.

Based on these assumptions, one can construct the word monoid over some object X
as the coproduct of all �nite tensor products of X with itself.

X∗ =
∐
i∈N

Xn with X0 = 1 and Xn+1 = X ⊗Xn for all n ∈ N.
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The injections of Xn into X∗ are denoted by inn. The concatenation µ : X∗ ⊗X∗ → X∗

is the unique morphism induced by
µ0 = (X0 ⊗X∗ = 1⊗X∗ = X∗ id→X∗) and

µn+1 = (Xn+1 ⊗X∗ = X ⊗Xn ⊗X∗ X⊗µn→ X ⊗X∗ incl→ X∗)

where the inclusion incl is induced by incln = X ⊗ Xn = Xn+1 inn+1→ X∗). The unit
η : 1→ X∗ is the injection 1 = X0 in0→X∗.

One can now introduce generalized Mealy-automata. A generalized Mealy-automaton
is a system A = (I,O, S, d, l) where I, O and S are objects and d : S ⊗ I → S and
l : S ⊗ I → O∗ are morphisms. I is the input object, O the output object, S the state
object, d the state transition and l the output assignment. One can de�ne structure-
preserving morphisms between automata in the usual way such that one gets a category
of automata.

The state transition and the output assignment can be extended to input words yield-
ing morphism d∗ : S ⊗ I∗ → S and l∗ : S ⊗ I∗ → O∗. For the latter, one must assume
that there is a natural morphism t : X → 1 for each object X. In all example categories
mentioned above, this is the total function from X into the singleton set 1. Moreover,
one needs a diagonalization 4 : X → X ⊗ X for each object X, which doubles the ar-
gument in most cases. Then d∗ is induced by d0 = (S ⊗ I0 = S ⊗ 1 = S

id→S) and
dn+1 = (S ⊗ In+1 = S ⊗ I ⊗ In d⊗In

→ S ⊗ In dn→S). And l∗ is analogeously induced by
l0 = (S ⊗ I0 t→1=O0 in0→O∗) and

ln+1 = (S ⊗ In+1 = S ⊗ In ⊗ I 4⊗I→ S ⊗ In ⊗ S ⊗ In ⊗ I
ln⊗dn⊗I→ O∗ ⊗ S ⊗ I O∗⊗l→ O∗ ⊗O∗ µ→O∗).

Input-output behaviour over closed categories
The extended state transitions and output assignments describe the input-output be-
haviour of the automata in an implicit way. A more explicit view on the semantics can be
obtained if the underlying category K is closed, i.e. the functor −⊗X has a right adjoint
functor 〈X,−〉 for every object X. Therefore, there is, for every object Y , a morphism
ev : 〈X,Y 〉 ⊗X → Y such that, for every morphism f : Z ⊗X → Y , a unique morphism
f : Z → 〈X,Y 〉 exists with f = ev ◦ 〈f ⊗X〉. Examples of closed categories are the cate-
gories of sets with total functions and with partial functions where 〈X,Y 〉 is the set of all
total resp. partial functions from X to Y and the universal morphism ev : 〈X,Y 〉⊗X → Y
is the usual application of functions to arguments.

Closed categories provide a coalgebraic counterpart to the de�niton of automata as
heterogeneous algebras as given above and a semantic morphism corresponding to the
extended output assignment. By using the universal properties of the assumed adjunction,
each automaton A = (I,O, S, d, l) induces the coalgebraic structure

A = (I,O, S, d : S → 〈I, S〉, l : S → 〈I,O∗〉)

with d = ev ◦ (d⊗ I) and l = ev ◦ (l⊗ I) and the semantic morphism SEM : S → 〈I∗, O∗〉
with l∗ = ev ◦ (SEM ⊗ I∗).
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To get a full separation of the automata and their input-output behaviours, one may
consider appropriate image factorizations of the semantic morphisms so that the images
form a behaviour category and the semantics is expressed by a semantic functor from the
category of automata into the behaviour category.

Input-output behaviour over pseudoclosed categories
Monoidal categories are not closed in general so that the consideration in the previous
section does not always apply. This holds particularly for nondeterministic automata. But
many categories with nondeterministic or stochastic functions or relations as morphisms
are at least pseudoclosed. This means that the considered category K has got a closed
subcategory K′ (with the same class of objects and the same tensor product for objects)
where the inclusion of K′ into K has a right adjoint functor P . In examples, this functor is
often the powerset functor or some variant of it. The universal property of this adjunction
associates a unique K ′-morphism f ′ : X → P (Y ) to each K-morphism f : X → Y .
In the example of power sets, this is just the one-to-one correspondence between binary
relations on X × Y and the mappings that assign all related second components to each
�rst component.

Combining the two adjunctions, automata in pseudoclosed categories allow one a coal-
gebraic view and an explicit behaviour construction, too.

Let A = (I,O, S, d, l) be an automaton. Then its coalgebraic variant is de�ned by
A = (I,O, S, d : S → 〈I, P (S)〉, l : S → 〈I, P (O∗)〉) with d′ = ev◦(d⊗I) and l′ = ev◦(l⊗I)
where d′ and l′ are the K′-morphisms corresponding to d and l resp. Analogously, one
gets the semantic morphism SEM : S → 〈I∗, P (O∗)〉 with l∗′ = ev ◦ (SEM ⊗ I∗) where
l∗′ : S ⊗ I∗ → P (O∗) corresponds to the extended output assignment l∗ : S ⊗ I∗ → O∗.

As the semantic morphisms are morphisms in the closed subcategory, one may use the
same image factorization as in the previous section to turn semantic morphisms into a
semantic functor.

Conclusion
Mealy automata (with output symbols instead of output words) are studied in some detail
in the books by Budach and Hoehnke as well as by Ehrig, Kiermeier, Kreowski and
Kühnel [2, 4]. In particular, reduction and minimization of automata are considered in
various respects. The relations of reduction and minimization on one hand and bisimulation
on the other hand may be investigated in future. In particular, this may shed some more
light on the behaviour of automata in pseudoclosed categories including several types of
nondeterministic automata.
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Modular Modelling with Monads

Christoph Lüth

FB 3 � Mathematik und Informatik
Universität Bremen

Germany

http://www.informatik.uni-bremen.de/∼cxl

One useful application of category theory in computer science are computational monads,
which are used to model diverse computational e�ects (such as stateful computations, ex-
ceptional behaviour or non-determinism). This goes back toMoggi [6], and is for example
used to great e�ect in the pure functional language Haskell [8, 11]. In this talk, we use the
same technique to model computational e�ects in higher-order logic, and in particular the
theorem prover Isabelle [7], thus shallowly embedding a small imperative language embed-
ded shallow into Isabelle. The talk consists of three parts: we �rst recall the basic notions
of monads, then show how the imperative language is built from three basic ingredients,
and �nally discuss the implementation.

Monads

A monad is the categorical modelling of an algebraic theory (that is, a set of operations and
equations on them). One attraction of monads is that they come with a rich categorical
model theory, giving a uniform treatment of both algebras and terms. The latter are given
by the Kleisi category of a monad; this is where the computations modelled by the monad
live. An adjunction between the base category and the Kleisli category gives us a notion
of lifting every function from the base to a pure computation.

To combine monads, we can (under some mild preconditions on the base category) use
colimits [3]. However, as the construction of colimits in general is quite intricate, two
special cases of combinations of monads which have been considered: the coproduct, in
particular of layered monads [5], and the tensor [1]. The former speci�es that the sequential
order of computations from the monads in question must be maintained, the latter speci�es
that they do not interact at all and hence their sequential order can be exchanged freely.

Modelling an Imperative Language

Our language is made up from three ingredients. Firstly, we have a core language with
iteration and case distinction. The case distinction is given by coproducts from the base,
and the iteration requires the existence of �xpoints.

Stateful computations can be added in two ways, either by an axiomatic description [9]
or constructively by state threads [4]. The former allows us to model typed references
and is more general, but may lead to arguments about consistency; the latter is more
restrictively typed, but constructive and admits more equations.

Finally, exceptional behaviour is modelled by the exception monad, which is just the
coproduct with a (�xed) set of exceptions.
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Modelling in Isabelle

The modelling of monads in Isabelle uses a recent extension of Isabelle with parameterised
theories and theory morphisms [2]. With these, we can model the monads as described
above as parameterised theories and their relation by theory morphisms between them.

Syntax plays an important rôle when it comes to interactive theorem proving, as a good
concise notation can make complicated proofs tractable. Therefore, we introduce a number
of syntactic conventions (some as in Haskell) for monadic expressions. Moreover, we need
a logic in which to reason about these; instead of e.g. Hoare logic [10] we choose a direct
approach which lets us use Isabelle's automatic proof procedures.

Conclusions

We have shown how to concisely model a core imperative language which is short but,
we argue, covers the essential features of most imperative languages. This can be imple-
mented in a theorem prover to yield a shallow embedding of the core imperative language
into higher-order logic; this in turn can be used to e.g. derive veri�cation conditions, or
prove program transformations. We plan to use our model in real-live program veri�cation
projects in the nearer future.
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Monad-independent Logic for Computational E�ects

Till Mossakowski

BISS, Department of Computer Science
University of Bremen

Germany

till@informatik.uni-bremen.de

The presence of computational e�ects, such as state, store, exceptions, input, output,
non-determinism, backtracking etc., complicates the reasoning about programs. In par-
ticular, usually for each e�ect (or each combination of these), an own logic needs to be
designed.

Monads, a well-known tool from category theory, have been used by Moggi [4] to
model computational e�ects (in particular, all of those mentioned above) in an elegant
way. In particular, state monads are used to emulate an imperative programming style in
the functional programming language Haskell [8]. Also, a monad for e�ects in Java has
been designed [1].

We have introduced a Hoare calculus [6] and a dynamic logic [7] that allow to reason
about such e�ects. Semantics and proof calculus of both logics are given in a completely
monad independent (and hence, e�ect independent) way. The particular (combination of)
e�ects needed for an application can then be axiomatically speci�ed in these logics.

In this work, we simplify the monad independent dynamic logic by detaching it from the
HasCasl framework as used in [7]. Instead, we introduce a term language and semantics
based on cartesian categories. The resulting calculus is shown to be sound and complete.
(A completeness result was missing so far.)

Monads for computations
On the basis of the seminal paper [4], monads are being used for encapsulating side e�ects
in modern functional programming languages; in particular, this idea is one of the central
concepts of Haskell [2]. Intuitively, a monad associates to each type A a type TA of
computations of type A; a function with side e�ects that takes inputs of type A and returns
values of type B is, then, just a function of type A→ TB. This approach abstracts away
from particular notions of computation such as store, non-determinism, non-termination
etc.; a surprisingly large amount of reasoning can in fact be carried out independently of
the choice of such a notion.

A monad on a given category C can be de�ned as a Kleisli triple T = (T, η,__∗), where
T : ObC → ObC is a function, the unit η is a family of morphisms ηA : A → TA, and
__∗ assigns to each morphism f : A→ TB a morphism f∗ : TA→ TB such that

η∗A = idTA, f∗ηA = f, and g∗f∗ = (g∗f)∗.

This description is equivalent to the more familiar one [3].
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In order to support a language with �nitary operations and multi-variable contexts (see
below), one needs a further technical requirement: a monad is called strong if it is equipped
with a natural transformation

tA,B : A× TB → T (A×B)

called strength, subject to certain coherence conditions (see e.g. [4]).
In [7], the notion of simple monad is de�ned. Roughly, an algebraic monad [3] is simple

if, in each of its equations, the two sides contain the same variables. All of the following
monads are simple.
Example 1 (see [4]) Computationally relevant monads on Set (all monads on Set are
strong) include

• stateful computations with possible non-termination: TA = (S →? (A × S)), where
S is a �xed set of states and __→? __ denotes the partial function type;

• (�nite) non-determinism: TA = Pfin(A), where Pfin denotes the �nite power set
functor;

• exceptions: TA = A+ E, where E is a �xed set of exceptions;

• interactive input: TA is the smallest �xed point of γ 7→ A+ (U → γ), where U is a
set of input values.

• non-deterministic stateful computations: TA = Pfin(S → (A × S)), where, again,
S is a �xed set of states;

Dynamic logic
The right framework for reasoning about both partial correctness as well as termination or
total correctness is dynamic logic as introduced in [5]. Here, we examine the infrastructure
that is needed in order to develop dynamic logic in a monad-independent way, and show
that this does indeed make sense when instantiated to the usual monads mentioned above.

Given a set S of basic types, the type system of monadic dynamic logic is generated by
A ::= 1 |Ω |TA |A×A |S

A signature Σ = (S, F ) consists of a set S of basic types and a set F of operation sym-
bols F : A → B, where A and B are types over S. The term language over a signa-
ture Σ and a context Γ of typed variables is given in Fig. 1. Repeated nestings such as
do x1 ← p1, . . . , xn ← pn; q are somewhat inaccurately denoted in the form do x̄← p̄; q.
Term fragments of the form x̄ ← p̄ are called program sequences. The quasi-type PDL
stands for formulas of propositional dynamic logic. We let [x̄ ← p̄]ϕ abbreviate the for-
mula 2 do x̄ ← p̄; ϕ, and omit the x̄ if not occurring in ϕ. PDL formulas can be used
in speci�cations; for examples, references and non-determinism have been speci�ed in [7].
[9] contains numerous examples, including the Java monad and a parsing monad.

The language can be interpreted over a strong simple monad T over a cartesian cate-
gory C. C is required to posses a distinguished object Ω such that Hom(A,Ω) is a Boolean
algebra for all objects A. The basic sorts need to be interpreted as objects in C. This is
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(var)
Γ, x : A� x : A

(app) f : A→ B ∈ Σ Γ � t : A
Γ � f(t) : B

(1)
Γ � ∗ : 1

(pair) Γ � t : A Γ � u : B
Γ � 〈t, u〉 : A×B

(fst) Γ � t : A×B
Γ � fst(t) : A

(snd) Γ � t : A×B
Γ � snd(t) : A

(do) Γ � p : TA Γ, x : A� q : TB
Γ � do x← p; q : TB

(ret) Γ � t : A
Γ � ret t : TA

(>)
Γ �> : Ω

(⊥)
Γ �⊥ : Ω

(¬) Γ � ϕ : Ω
Γ � ¬ϕ : Ω

similarly for ∧,∨,⇒, ⇐⇒

(2) Γ � ϕ : TΩ
Γ � 2ϕ : PDL

(PDL) Γ � ϕ : PDL
Γ � ϕ : TΩ

Figure 1: Term language for propositional dynamic logic

easily extended to all types, giving an interpretation [[A]] for each type A. Likewise, basic
operations need to be interpreted as morphisms inC . Then a term x1 : A1, . . . xn, An�t : A
can be interpreted as a morphism [[t]] : [[A1]]×· · ·×[[An]]→ [[A]], using the cartesian structure
to interpret paring and projections, the monad to interpret do and ret, and the Boolean
algebra structure to interpret the connectives. We also can interpret equations between
terms as equations (or equalizers) of the arrows that are denoted by the terms. This will
be needed in a moment.

PDL formulas will be interpreted as certain computations of type TΩ. They are ex-
pected to have no side-e�ect, although they may e.g. read the state (if a notion of state is
present in the monad). This is abstractly captured as follows.

A program p is called discardable if
(do y ← p; ret ∗) = ret ∗,

A program p is called copyable if
(do x← p; y ← p; ret(x, y)) = do x← p; ret(x, x).

p is called deterministically side-e�ect free if it is both discardable and copyable. Let
PDL be the subobject of TΩ consisting of all deterministically side-e�ect free compu-
tations. Then T is said to admit dynamic logic, if there is an operation Box sending
morphisms A→ TΩ to morphisms A→ PDL (used to interpret 2), such that

(do x̄← p̄; a← 2ϕ; xi ⇒ a) = ret> i� (do x̄← p̄; a← ϕ; xi ⇒ a) = ret>

Fig. 2 contains a calculus for dynamic that has been shown to be sound and complete
(completeness requires restrictions on the signature, in particular, argument types of opera-
tions must not contain T ). Compared with the calculus in [7], the rules for the diamond are
omitted, because in classical logic, 3 can be de�ned as ¬2¬. Rules (cong), (2) and (CC)
have been added for ensuring completeness. Axiom schema (CC) throws in all equalities
that holds for cartesian categories, like fst(〈x, y〉) = x. Axiom schema (Taut) includes all
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Rules:

(nec) ϕ

[x̄← p̄]ϕ
x̄ not free

in assumptions
(mp) ϕ⇒ ψ; ϕ

ψ

Axioms:
(K1) [x̄← p̄] (ϕ⇒ ψ)⇒ [x̄← p̄]ϕ⇒ [x̄← p̄]ψ

(K32) retφ⇒ [p] retφ

(seq2) [x̄← p̄; y ← q]ϕ ⇐⇒ [x̄← p̄] [y ← q]ϕ

(ctr2) [x← p; y ← q]ϕ ⇐⇒ [y ← (do x← p; q)]ϕ (x /∈ FV (ϕ))

(ret2) [x← ret a; z̄ ← q̄]ϕ ⇐⇒ [z̄ ← q̄[a/x]]ϕ[a/x]

(cong) (ϕ ⇐⇒ ψ) =⇒ (χ[ϕ/x] ⇐⇒ χ[ψ/x])

(2) [x← ϕ]ψ ⇐⇒ [x← 2ϕ]ψ ϕ : TΩ

(CC) ϕ[t/x] ⇐⇒ ϕ[u/x] for CC ` t = u

(Taut) ϕ ϕ a lifted tautology
CC = {fst(〈x, y〉) = x; snd(〈x, y〉) = y; 〈fst(x), snd(x)〉 = x; x : 1 = ∗}

Figure 2: The generic proof calculus for propositional dynamic logic

22



tautologies lifted to PDL: The usual logical connectives are lifeted to PDL by de�ning e.g.
ϕ⇒ ψ := 2(do a← ϕ; b← ψ; ret(a⇒ b)) : PDL

The PDL logic has so far been applied to the reasoning about Haskell and Java programs.
This is supported by a coding in the theorem prover Isabelle [9]. A Hoare calculus can be
built on top of PDL.
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Abstract

It is with great pleasure that I dedicate this little note on stream functions and circuits to
Horst Reichel, as a sign of my appreciation and gratitude for his work in general and his
contributions to the workshop on coalgebraic methods in computer science in particular.

In this note, we study the behaviour of circuits of the following type:
◦_ ◦�

Roo ◦�
aoo

σ � + // ◦ �
C

OO

// τ

Such a circuit inputs elements of a given set A one by one, at every step producing an
output element in A at the same time. The behaviour of circuits will be described by
streams (in�nite sequences) of inputs and outputs, since the nth output will generally
depend not only on the nth input, but also on all earlier inputs. Therefore we shall use
stream functions f : Aω → Aω to express the stream of outputs as a function of the stream
of inputs: τ = f(σ).

Circuits are built from the following four basic ingredients: a sum or +-gate inputs two
streams and outputs their sum; a copier or C-gate inputs one stream and outputs two
identical copies; a register or R-gate is a one-place memory cell with initial value 0, which
inputs a stream and outputs �rst the initial value 0 and then, with a one step delay, the
input stream; �nally, an a-multiplier or a-gate multiplies its input stream elementwise by a
(∈ A). We shall in fact distinguish between three di�erent interpretations or types of such
circuit diagrams, called:
(1) signal �ow graphs
(2) linear sequential machines
(3) sequential arithmetic circuits

The graphical syntax of all these circuits is the same. The di�erence between them consists
of the type of streams they process: signal �ow graphs work on streams of real (or complex)
numbers whereas both linear sequential machines and sequential arithmetic circuits work
on bitstreams (in�nite sequences of 0's and 1's). Moreover, the interpretation of the +-gate
is di�erent for each type of circuit. It computes,
(1) in signal �ow graphs, the elementwise sum (σ + τ)(n) = σ(n) + τ(n) of real (or

complex) numbers;
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(2) in linear sequential machines, the elementwise sum modulo-2 (σ+τ)(n) = σ(n)⊕σ(n)
of Boolean values;

(3) in sequential arithmetic circuits, the sequential addition of bitstreams (see below).
Circuit types (1) and (2) are well-known in the literature (cf. [2] and [1]). Circuits of
type (3) have been described in [3], but might very well be older than that2. All of these
circuits are interesting for a number of reasons. They have various kinds of applications
such as signal processing, switching theory, and binary arithmetic, respectively. Further-
more, they are interesting as computational devices because of the presence of memory
(in the form of registers) and in�nite behaviour (in the form of loops). Finally, for all
three types of circuits there exists a simple and elegant mathematical description. It is the
latter point with which we shall occupy ourselves here. Our main contribution will be the
presentation of one uniform model for all three types of circuits at the same time.

Traditionally, circuits of types (1) and (2) are modelled with the help of formal power
series∑

k≥0

akD
k = a0 + (a1 ×D) + (a2 ×D2) + · · ·

where D is a �formal� variable (symbol) and the coe�cients ai are typically taken from
some semiring or �eld A. Formal power series are used as representations of the streams of
their coe�cients (a0, a1, a2, . . .). The reason that formal power series are a suitable means
to describe circuits of types (1) and (2) is, in essence, two-fold. (i) First, the behavior of
a register can be simply modelled by (symbolic) multiplication by D (which is also called
the delay operator):
α =

∑
k≥0 akD

k = (a0, a1, a2, . . .) �
R // (0, a0, a1, a2, . . .) =

∑
k≥0 akD

k+1 = D × α

(ii) Second, the +-gate can be modelled by addition of formal power series, which is de�ned
as the elementwise addition of the respective coe�cients, in the underlying semiring or
�eld A.

The formal power series approach fails, however, for sequential arithmetical circuits.
Here addition gives rise to a delay in the output because of a so-called `carry' bit, as in

(1, 0, 0, 0, . . .) + (1, 0, 0, 0, . . .) = (0, 1, 0, 0, 0, . . .)

which represents the computation 1 + 1 = 2. As a consequence, addition of input streams
is not elementwise, violating condition (ii) above.

Therefore we propose to use streams, and only streams, instead, to deal uniformly with
circuits of all three types at the same time. Notably, for all of them we can de�ne the
operation of sum as a binary operation on streams. The elementwise de�nitions of sum
and sum modulo-2 for the operation of addition in signal �ow graphs and linear sequential
machines was already given above. Sequential binary addition on bitstreams is not elemen-
twise, but can be conveniently de�ned in terms of so-called behavioural (stream) di�erential
equations. We de�ne the stream derivative of σ = (σ0, σ1, σ2, . . .) by σ′ = (σ1, σ2, σ3 . . .)
and the initial value of σ by σ(0) = σ0. Then we can de�ne streams and stream functions

2I am very much interested in relevant references.
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by means of di�erential equations and initial values, very much as in classical analysis. For
the details of the di�erential equation for sequential binary addition, we refer to [3].

Having a binary operation of stream addition, for all three circuit types, one can de�ne
in all three cases corresponding notions of multiplication (which in essence is repeated
addition), minus, and (multiplicative) inverse. If one embeds the set A into Aω by de�ning
[a] = (a, 0, 0, 0, . . .), for all a ∈ A, one also has constants [0] and [1]. As it turns out, we
obtain (three di�erent versions of) an integral domain

(Aω, +, −, ×, (−)−1, [0], [1])

in which every stream σ ∈ Aω with initial value σ(0) 6= 0 has an inverse. Sofar we already
have all that is needed to model the behaviour of +-gates, C-gates and a-gates:

σ �

+ // σ + τ

τ  

σ

σ �
C

11

--

σ �
a // [a]× σ

σ

In order to model registers, we de�ne X = (0, 1, 0, 0, 0, . . .). It will play the role of the
�formal� variable D of formal power series above, but note that X is simply a constant
stream. Multiplication with X gives a one step delay (in all three integral domains), which
is precisely what we need for our R-gates:

σ = (σ0, σ1, σ2, . . .)
�

R // (0, σ0, σ1, σ2, . . .) = X × σ

We can now give the mathematical semantics of our circuits, without the need to distin-
guish between the three di�erent types. All that we shall use is the fact that Aω is an
integral domain together with the input-output characterisations of the four basic gates.
For instance, consider again the circuit we mentioned at the beginning. In order to compute
the output stream τ as a function of the input stream σ, we insert intermediate streams ρi

as follows:
ρ1_ ρ2

�
Roo ρ3

�
aoo

σ � + // ρ4
�

C

OO

// τ

This enables us to write down the following equations:
ρ1 = X × ρ2, ρ2 = [a]× ρ3, ρ3 = ρ4, ρ4 = σ + ρ1, τ = ρ4

leading to the following result, in which the output τ is expressed as a function of the
input σ:

τ =
1

1− ([a]×X)
× σ

In order to give a general characterisation of arbitrary �nite circuits (of again any of our
three circuit types), we use the constant X for the de�nition of polynomial streams, which
are of the form

a0 + a1X + a2X
2 + · · ·+ anX

n = (a0, a1, a2, . . . an, 0, 0, 0, . . .)
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for all a0, . . . an ∈ A (omitting square brackets around the coe�cients and simply writing ai

for the stream [ai]). Correspondingly, we call a stream rational if it is the quotient of two
polynomial streams (with the initial value of the denominator stream di�erent from 0).
Now we can formulate the following theorem.
Theorem 2
(a) For every �nite circuit, in which feedback loops always pass through at least one

register gate, the output stream is obtained from the input stream by an application
of a stream function f : Aω → Aω of the form, for all σ ∈ Aω: f(σ) = ρ × σ, for a
�xed rational stream ρ ∈ Aω.

(b) Conversely, any function of the form f(σ) = ρ× σ, with

ρ =
r0 + (r1 ×X) + · · ·+ (rk−1 ×Xk−1) + (rk ×Xk)
1 + (s1 ×X) + · · ·+ (sk−1 ×Xk−1) + (sk ×Xk)

(where ri, sj ∈ A) can be implemented by a circuit of the following normal form:

σ � // ◦ �
R ///

r0

''◦
/

r1

� ··· //4
−s1

◦ �
R //+

rk−1

4

−sk−1

dd ◦ � rk //4

−sk

τ

(In this diagram, we use the graphical convention that arrow heads arriving in the
same node are actually connected by +-gates, which are not drawn. Similarly, we
omit C-gates.)

In [3], a proof of this theorem is given for the case of sequential arithmetic circuits (called
2-adic linear circuits there). The contribution of the present note is the observation that
this proof, which is based on stream calculus, generalises the approach using formal power
series, and works for circuits of all three types at the same time.
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Since the seminal work of Hennessy and Milner [4], it has been apparent that reac-
tive systems and modal logic are tightly connected. In particular, modal logic is suited as
a speci�cation language for reactive systems in that it both respects and characterizes be-
havioral equivalence. In recent years, coalgebra has emerged as an appropriate framework
for the treatment of reactive systems in a vastly more general sense than the traditional
concept of labelled transition systems [16], covering also as diverse system types as prob-
abilistic automata, multigraphs, branching systems, and linear automata, to name just a
few; this variation is achieved by parametrizing the theory by a so-called signature func-
tor, which determines a datatype in which collections of successor states are organized.
Despite its generality, coalgebra has proved suitable for both the de�nition of the central
concepts of concurrency and for the proof of non-trivial results about them. E.g, coalge-
bra has provided a unifying perspective on notions such as coinduction, corecursion, and
bisimulation.

The search for a coalgebraic analogue of Hennessy-Milner logic [5, 14, 6, 11] has led to
the de�nition of what we shall refer to as coalgebraic modal logic by Pattinson [13]; this
de�nition is based on the crucial notion of predicate liftings, which transform predicates
on X into predicates on TX, where T is the signature functor. In comparison with the pre-
viously de�ned coalgebraic logic [9], coalgebraic modal logic is relatively easily understood
and therefore usable in actual software speci�cation; variants of coalgebraic modal logic
indeed appear as features in the algebraic-speci�cation language CoCasl [10] and in the
object-oriented speci�cation language CCSL [15]. Coalgebraic modal logic subsumes, be-
sides standard Hennessy-Milner logic, well-known non-normal modal logics such as graded
modal logic or probabilistic modal logic [8, 3]; some still relatively natural examples are
even non-monotone. Coalgebraic modal logic is invariant under behavioral equivalence.
Moreover, it has been shown in [13] that under suitable conditions, foremost accessibility
of the signature functor (essentially a restriction on the branching degree) and the existence
of `enough' predicate liftings, coalgebraic modal logic is expressive, i.e. logical equivalence
of states implies their behavioral equivalence.

The latter result has been improved in [17], where it was shown that expressivity really
requires only the two explicitly mentioned essential conditions, rather than also further
technical side conditions. Moreover, examples were given showing that there exist signature
functors which do not admit an expressive unary modal logic, i.e. have too few (unary)
predicate liftings. This de�ciency can be remedied by moving on to polyadic modal logic:
every accessible functor has enough polyadic predicate liftings and therefore admits an
expressive polyadic modal logic. For example, an expressive logic for branching processes
requires a binary modal operator which describes the next-step behaviors of both branches.
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Moreover, polyadic modal logic has the added advantage of being closed under the modular
construction of logics for coalgebras [2].

For various reasons, many coalgebraic modal logics fail to be compact [18], so that
generic completeness results will necessessarily be limited to weak completeness, unless
further restrictions are imposed on the signature functor [7]. Weak completeness for a
deduction system consisting of propositional reasoning, a congruence rule, and a given set
of axioms of rank 1 has been established in [12], subject to the condition that the set of
axioms is complete for single-step semantic consequence; the latter property is referred to
as re�exivity. It is shown in [18] that re�exively axiomatized coalgebraic modal logic has
�nite models for formally consistent formulae, a result which has weak completeness as
a corollary. Moreover, it is shown that the set of all valid formulae of rank 1 is always
re�exive, which then implies that coalgebraic modal logic has the �nite model property :
every satis�able formula is satis�able in a �nite model of exponentially bounded size.

The �nite model result relies on the construction of small canonical models, based on
maximally consistent subsets of closed sets of formulae. The associated truth lemma can be
formulated in terms of Hintikka sets; this allows the design of a generic decision algorithm
for coalgebraic modal logic, which reduces the satis�ability problem to the rather simpler
one-step satis�ability problem. One thus not only arrives at proving the decidability of
a large number of modal logics, but also obtains NEXPTIME as a generic complexity
bound, provided the one-step satis�ability problem is in NP . This applies in particular
to Hennessy-Milner logic, graded modal logic, and probabilistic modal logic. While the
former two examples are known to be PSPACE -complete [1, 19], no complexity bound has
so far been given for probabilistic modal logic. We conjecture that the generic result can
be improved to PSPACE ; however, an adaption of the standard witness algorithm for K
to the general case seems infeasible, so that new methods, possibly along the lines of [19],
are required.

Ongoing work in collaboration with D. Pattinson is concerned with a �nite model con-
struction, and thus a completeness proof, for an extended language featuring an iteration
modality generalizing the always operator of temporal logic. Such an extension, which,
in a less general framework, already features in the present design of CoCasl, strongly
enhances the usability of coalgebraic modal logic in system speci�cation.
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