Avoiding Dead States in Query Learning of Regular Tree Languages

Frank Drewes

(work done in collaboration with Johanna Högberg)

Introduction - the subject

Algorithmic task Learn an initially unknown regular tree language U, i.e., construct a finite tree automaton (fta) A such that L(A) = U.

Source of information about U A "teacher" who can answer

- membership queries given a tree t, is it true that $t \in U$?
- equivalence queries given an fta A, is it true that L(A) = U? Otherwise, return a tree which is a counterexample.

This is the popular MAT model for algorithmic learning (MAT='minimally adequate teacher') introduced by Angluin in 1987.

Introduction - the background

- In 1987, Angluin proposed a polynomial algorithm that learns a regular language U, returning the minimal finite automaton recognizing U.
- In 1990, Sakakibara extended this to regular tree languages. However,
 - the running time is polynomial only if the alphabet is fixed,
 - the size of counterexamples returned by the teacher affects the running time (too) heavily, and
 - as the fta constructed is total, it may be exponentially larger than the minimal partial fta recognizing U (unless the alphabet is fixed).
- ⇒ Sakakibara: Can we avoid dead states? It turns out that our solution to this problem is in fact a remedy for all three disadvantages.

Trees

- Trees are built over a ranked alphabet Σ (i.e., tree = term).
- The notation $f^{(k)}$ indicates that $f \in \Sigma$ is of rank k.
- A tree with root f^(k) and direct subtrees t₁,..., t_k is written f[t₁,..., t_k] (or simply f if k = 0).
- For a set T of trees, $\Sigma(T) = \{f[t_1, \ldots, t_k] \mid f^{(k)} \in \Sigma \text{ and } t_1, \ldots, t_k \in T\}.$
- A context is a tree c containing exactly one occurrence of $\Box^{(0)}$.
- If c is a context and t a tree, then c[t] is obtained by substituting t for \Box in c.
- A tree language is a set of trees.

Finite tree automata (running example)

U = all trees over $a^{(2)}, b^{(1)}, \epsilon^{(0)}$ in which precisely one child of each a is a b.

Fta: states q, q_b, q' (where q, q_b are accepting) transitions

 $\begin{array}{cccc} \delta(\lambda,\epsilon) = q & \delta(q,b) = q_b & \delta(q_b,b) = q_b & \delta(qq_b,a) = q & \delta(q_bq,a) = q \\ \epsilon \to q & b \to q_b & b \to q_b & a \to q & a \to q \\ & & & & & & & \\ q & & & & & & & \\ \end{array}$

 $\delta(\ldots,\ldots) = q'$ in all other cases (q' is a dead state)

Recall Myhill-Nerode: Trees $s = b[\epsilon]$ and $s' = b[b[\epsilon]]$ are equivalent in every context and need not be distinguished. This is why $\delta^*(s) = q_b = \delta^*(s')$.

Basic notions

The original idea

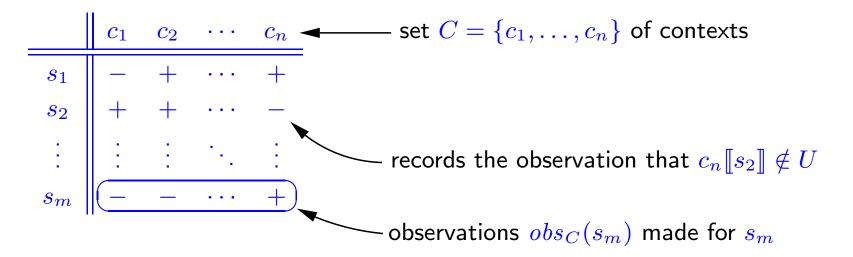
Angluin's idea is inspired by the Myhill-Nerode theorem:

- Trees s, s' are equivalent with respect to U
 iff δ*(s) = δ*(s') in the minimal fta recognizing U
 iff c[[s]] ∈ U ⇔ c[[s']] ∈ U for all contexts c.
- The algorithm collects

(a) a set $S = \{s_1, \ldots, s_m\}$ of trees representing equivalence classes and

(b) a set $C = \{c_1, \ldots, c_n\}$ of contexts distinguishing between the classes.

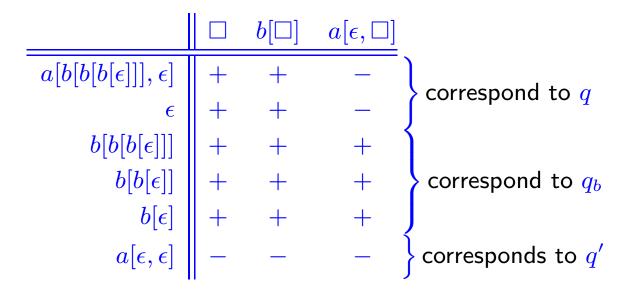
Intuitively, $S = \{s_1, \ldots, s_m\}$ and $C = \{c_1, \ldots, c_n\}$ yield an observation table:



Fta proposed to the teacher:

- Use the observations $obs_C(s_1), \ldots, obs_C(s_m)$ (the table rows) as states.
- Define $\delta(obs_C(s_{i_1})\cdots obs_C(s_{i_k}), f) = obs_C(f[s_{i_1},\ldots,s_{i_k}]).$
- Let $obs_C(s_i)$ be accepting iff $s_i \in U$.

Possible table in our running example (final stage):



In the automaton constructed, we have, e.g., $\delta(\langle ++-\rangle\langle +++\rangle, a) = \langle ++-\rangle$ because $obs_C(a[\epsilon, b[\epsilon]]) = \langle ++-\rangle$.

Some disadvantages

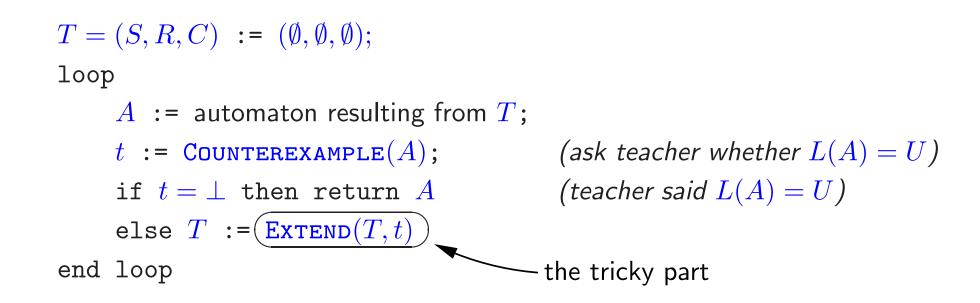
- If the teacher returns a counterexample *s*, each subtree of *s* is added to the table. This results in
 - (a) a large table (equivalence classes are represented many times)
 - (b) large trees (if the teacher returns large counterexamples)
- If $obs_C(s_i) = \langle -\cdots \rangle$, then s_i may (!) represent a dead state.
- Note: These disadvantages are of little importance in Angluin's case.

The proposed approach

We maintain a third set $R \supseteq S$ of trees representing transitions.

- We always have $S \subseteq R \subseteq \Sigma(S)$ and $obs_C(R) \subseteq obs_C(S)$.
- As before, each $obs_C(s)$, $s \in S$, is a state.
- Each $r = f[s_1, \dots, s_k] \in R$ yields the transition $\delta(obs_C(s_1) \cdots obs_C(s_k), f) = obs_C(r).$
- Additional properties
 - Distince $s, s' \in S$ yield distinct states, i.e., $obs_C(s) \neq obs_C(s')$.
 - Distinct $r, r' \in R$ yield distinct transitions.
 - $|C| \le |S|.$
 - No tree in s corresponds to a dead state.

The main procedure (the "learner") is a simple loop:



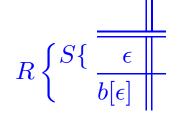
Extending the table (example)

Table after the first step (with $R = S = \{\epsilon\}$ and $C = \emptyset$):

 $\frac{||}{\epsilon} \qquad \Rightarrow \delta(\lambda, \epsilon) = \langle \rangle$ $\Rightarrow L(A) = \{\epsilon\} (\langle \rangle \text{ is accepting since } \epsilon \in U)$ \Rightarrow a counterexample is, e.g., $t = b[a[b[b[\epsilon]], \epsilon]]$

EXTEND chooses any subtree $r \in \Sigma(S) \setminus S$. Say, $t = c[r] = b[a[b[b[\epsilon]], \epsilon]]$.

If $r \notin R$, then r represents a missing transition and is added to R: <u>Case 1</u>

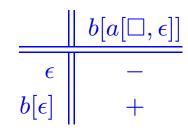


 $R \begin{cases} S\{ \ \overline{\frac{\epsilon}{b[\epsilon]}} \\ b[\epsilon] \end{cases} \Rightarrow \delta(\langle\rangle, b) = \delta(\lambda, \epsilon) = \langle\rangle \\ \Rightarrow L(A) = \text{all trees of the form } b[\cdots b[\epsilon] \cdots] \\ \Rightarrow b[a[b[b[\epsilon]], \epsilon]] \text{ continues to be a counterexample} \end{cases}$

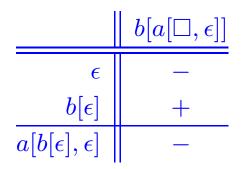
 $R\left\{S\left\{\begin{array}{c|c} \hline \epsilon \\ \hline \hline \hline b[\epsilon] \end{array}\right.\right.$

Recall: the counterexample is still $b[a[b[b[\epsilon]], \epsilon]]$.

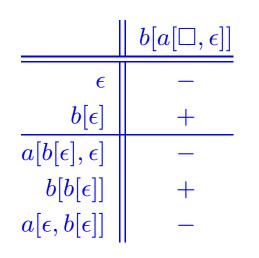
- **<u>Case 2</u>**: Decomposition yields $t = c[r] = b[a[b[b[\epsilon]], \epsilon]]$, again, but now $r \in R!$ EXTEND tries to make the counterexample smaller by replacing r with the unique $s \in S$ satisfying $obs_C(s) = obs_C(r)$ (i.e., with $s = \epsilon$). Membership queries reveal that $c[s] = b[a[b[\epsilon], \epsilon]]$ is indeed a counterexample. \Rightarrow set t := c[s] and continue with this counterexample.
- **<u>Case 3</u>**: Now, decomposition yields $t = c[r] = b[a[b[\epsilon], \epsilon]]$. Again, $r \in R$, but now $c[s] = b[a[\epsilon, \epsilon]]$ fails to be a counterexample. \Rightarrow the context $c = b[a[\Box, \epsilon]]$ distinguishes s from r $\Rightarrow c$ is added to C and r moved into S.



 $\Rightarrow \delta(\lambda, \epsilon) = \langle - \rangle \text{ and } \delta(\langle - \rangle, b) = \langle + \rangle$ $\Rightarrow L(A) = \{\epsilon, b[\epsilon]\}$ $\Rightarrow still, b[a[b[\epsilon], \epsilon]] is a counterexample$ $\Rightarrow r = a[b[\epsilon], \epsilon] represents a missing transition$



the new transition is $\delta(\langle + \rangle \langle - \rangle, a) = \langle - \rangle$ \Rightarrow the counterexample $a[\epsilon, b[b[\epsilon]]]$ may be used twice 1. the decomposition $a[\epsilon, b[b[\epsilon]]]$ adds $b[b[\epsilon]]$ to R2. $a[\epsilon, b[b[\epsilon]]] \rightsquigarrow a[\epsilon, b[\epsilon]]$ adds $a[\epsilon, b[\epsilon]]$ to R



The final table, which yields the correct fta.

The three cases of EXTEND (summary):

EXTEND decomposes t as t = c[r] with $r \in \Sigma(S) \setminus S$.

 $\underline{\textbf{Case 1}} \quad r \notin R$

 \Rightarrow add r to R (and to S if $obs_C(r) \notin obs_C(S)$)

Otherwise, there is a unique $s \in S$ with $obs_C(s) = obs_C(r)$.

<u>Case 2</u> c[s] is also a counterexample (check by asking membership queries) \Rightarrow continue with c[s] as the counterexample.

<u>Case 3</u> c[s] is not a counterexample

 \Rightarrow the context c proves that c[r] and c[s] are inequivalent

 \Rightarrow add c to C and move r into S.

This is also known as Shapiro's contradiction backtracking technique.

The running time of the learner

- $S \subseteq R \subseteq \Sigma(S)$ means that R can be represented as a dag with |R| nodes.
- Basically, the recursion of EXTEND (repeatedly replacing c[r] with c[s]) takes time linear in the size of the counterexample.
- Most of the time, new transitions are added. Then the dag representing R and the resulting fta can be updated without recomputing them from scratch.
- More time-consuming recomputations are only required in the seldom case where a new context is added (recall that $|C| \leq |S|$).

If (Σ, Q, δ, F) is the minimial partial fta recognizing U, r the maximum rank of symbols in Σ , and m the maximum size of counterexamples, then the overall running time of the learner is $O(r \cdot |Q| \cdot |\delta| \cdot (|Q| + m))$. This does not include the time required by the teacher.

How many queries are asked?

Equivalence queriesEach iteration of the main loop enlarges S or R \Rightarrow at most $|Q| \cdot |\delta|$ equivalence queries.

Optimization: reuse counterexamples as long as possible.

Membership queries

- $|Q| \cdot |\delta|$ entries of the observation table must be filled.
- *M* = sum of sizes of counterexamples queries are needed to shrink the counterexamples.
- |Q| queries are needed to determine whether states are accepting.
- \Rightarrow at most $M + |Q| \cdot (|\delta| + 1)$ membership queries.

Concluding remarks

- The gain regarding efficiency compared with Angluin/Sakakibara depends on U since the total fta recognizing U has about |Q|^r transitions whereas the partial one sometimes has only |Q| transitions.
- It also depends on the behaviour of the teacher since large counterexamples to not matter so much in our approach.
- Some open questions:
 - Identify language classes where the teacher can find counterexamples that reveal much about U (= counterexamples that can be reused).
 - Can the approach be improved in such a way that fewer equivalence queries (e.g., only O(|Q|)) are used?
 - Learning of weighted tree automata???

