
Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Avoiding Dead States
in Query Learning of Regular Tree Languages

Frank Drewes
(

work done in collaboration with

Johanna Högberg

)

1

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Introduction - the subject

Algorithmic task Learn an initially unknown regular tree language U ,

i.e., construct a finite tree automaton (fta) A such that L(A) = U .

Source of information about U A “teacher” who can answer

• membership queries – given a tree t, is it true that t ∈ U?

• equivalence queries – given an fta A, is it true that L(A) = U?

Otherwise, return a tree which is a counterexample.

This is the popular MAT model for algorithmic learning (MAT=‘minimally

adequate teacher’) introduced by Angluin in 1987.

Introduction 2

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Introduction - the background

• In 1987, Angluin proposed a polynomial algorithm that learns a regular

language U , returning the minimal finite automaton recognizing U .

• In 1990, Sakakibara extended this to regular tree languages. However,

– the running time is polynomial only if the alphabet is fixed,

– the size of counterexamples returned by the teacher affects the running

time (too) heavily, and

– as the fta constructed is total, it may be exponentially larger than the

minimal partial fta recognizing U (unless the alphabet is fixed).

⇒ Sakakibara: Can we avoid dead states? It turns out that our solution to this

problem is in fact a remedy for all three disadvantages.

Introduction 3

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Trees

• Trees are built over a ranked alphabet Σ (i.e., tree = term).

• The notation f (k) indicates that f ∈ Σ is of rank k.

• A tree with root f (k) and direct subtrees t1, . . . , tk is written f [t1, . . . , tk] (or

simply f if k = 0).

• For a set T of trees, Σ(T) = {f [t1, . . . , tk] | f (k) ∈ Σ and t1, . . . , tk ∈ T}.

• A context is a tree c containing exactly one occurrence of �(0).

• If c is a context and t a tree, then c[[t]] is obtained by substituting t for � in c.

• A tree language is a set of trees.

Basic notions 4

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Finite tree automata (running example)

U = all trees over a(2), b(1), ǫ(0) in which precisely one child of each a is a b.

Fta: states q, qb, q
′ (where q, qb are accepting)

transitions

δ(λ, ǫ) = q

ǫ → q

δ(q, b) = qb

b

q

→ qb

δ(qb, b) = qb

b

qb

→ qb

δ(qqb, a) = q

a

q qb

→ q

δ(qbq, a) = q

a

qb q

→ q

δ(. . . , . . .) = q′ in all other cases (q′ is a dead state)

Recall Myhill-Nerode: Trees s = b[ǫ] and s′ = b[b[ǫ]] are equivalent in every

context and need not be distinguished. This is why δ∗(s) = qb = δ∗(s′).

Basic notions 5

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

The original idea

Angluin’s idea is inspired by the Myhill-Nerode theorem:

• Trees s, s′ are equivalent with respect to U

iff δ∗(s) = δ∗(s′) in the minimal fta recognizing U

iff c[[s]] ∈ U ⇐⇒ c[[s′]] ∈ U for all contexts c.

• The algorithm collects

(a) a set S = {s1, . . . , sm} of trees representing equivalence classes and

(b) a set C = {c1, . . . , cn} of contexts distinguishing between the classes.

The original idea 6

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Intuitively, S = {s1, . . . , sm} and C = {c1, . . . , cn} yield an observation table:

c1 c2 · · · cn set C = {c1, . . . , cn} of contexts

s1 − + · · · +

s2 + + · · · −
...

...
...

. . .
... records the observation that cn[[s2]] /∈ U

sm − − · · · +
�
�

�
�

observations obsC(sm) made for sm

Fta proposed to the teacher:

• Use the observations obsC(s1), . . . , obsC(sm) (the table rows) as states.

• Define δ(obsC(si1) · · · obsC(sik
), f) = obsC(f [si1 , . . . , sik

]).

• Let obsC(si) be accepting iff si ∈ U .

The original idea 7

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Possible table in our running example (final stage):

� b[�] a[ǫ,�]

a[b[b[b[ǫ]]], ǫ] + + −
)

correspond to q
ǫ + + −

b[b[b[ǫ]]] + + +

b[b[ǫ]] + + +

9

>

=

>

;

correspond to qb

b[ǫ] + + +

a[ǫ, ǫ] − − −
o

corresponds to q′

In the automaton constructed, we have, e.g., δ(〈+ + −〉〈+ + +〉, a) = 〈+ + −〉

because obsC(a[ǫ, b[ǫ]]) = 〈+ + −〉.

The original idea 8

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Some disadvantages

• If the teacher returns a counterexample s, each subtree of s is added to the

table. This results in

(a) a large table (equivalence classes are represented many times)

(b) large trees (if the teacher returns large counterexamples)

• If obsC(si) = 〈− · · · −〉, then si may (!) represent a dead state.

• Note: These disadvantages are of little importance in Angluin’s case.

The original idea 9

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

The proposed approach

We maintain a third set R ⊇ S of trees representing transitions.

• We always have S ⊆ R ⊆ Σ(S) and obsC(R) ⊆ obsC(S).

• As before, each obsC(s), s ∈ S, is a state.

• Each r = f [s1, . . . , sk] ∈ R yields the transition

δ(obsC(s1) · · · obsC(sk), f) = obsC(r).

• Additional properties

– Distince s, s′ ∈ S yield distinct states, i.e., obsC(s) 6= obsC(s′).

– Distinct r, r′ ∈ R yield distinct transitions.

– |C| ≤ |S|.

– No tree in s corresponds to a dead state.

The proposed approach 10

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

The main procedure (the “learner”) is a simple loop:

T = (S, R, C) := (∅, ∅, ∅);

loop

A := automaton resulting from T;

t := Counterexample(A); (ask teacher whether L(A) = U)

if t = ⊥ then return A (teacher said L(A) = U)

else T := Extend(T, t)
�

�
	

the tricky partend loop

The proposed approach 11

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Extending the table (example)
Table after the first step (with R = S = {ǫ} and C = ∅):

ǫ

⇒ δ(λ, ǫ) = 〈〉

⇒ L(A) = {ǫ} (〈〉 is accepting since ǫ ∈ U)

⇒ a counterexample is, e.g., t = b[a[b[b[ǫ]], ǫ]]

Extend chooses any subtree r ∈ Σ(S) \ S. Say, t = c[[r]] = b[a[b[b[ǫ]], ǫ]].

Case 1 If r /∈ R, then r represents a missing transition and is added to R:

S{ ǫ
R

b[ǫ]

⇒ δ(〈〉, b) = δ(λ, ǫ) = 〈〉

⇒ L(A) = all trees of the form b[· · · b[ǫ] · · ·]

⇒ b[a[b[b[ǫ]], ǫ]] continues to be a counterexample

The proposed approach 12

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

S{ ǫ
R

b[ǫ]

Recall: the counterexample is still b[a[b[b[ǫ]], ǫ]].

Case 2: Decomposition yields t = c[[r]] = b[a[b[b[ǫ]], ǫ]], again, but now r ∈ R!

Extend tries to make the counterexample smaller by replacing r with the

unique s ∈ S satisfying obsC(s) = obsC(r) (i.e., with s = ǫ).

Membership queries reveal that c[[s]] = b[a[b[ǫ], ǫ]] is indeed a counterexample.

⇒ set t := c[[s]] and continue with this counterexample.

Case 3: Now, decomposition yields t = c[[r]] = b[a[b[ǫ], ǫ]].

Again, r ∈ R, but now c[[s]] = b[a[ǫ, ǫ]] fails to be a counterexample.

⇒ the context c = b[a[�, ǫ]] distinguishes s from r

⇒ c is added to C and r moved into S.

The proposed approach 13

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

b[a[�, ǫ]]

ǫ −

b[ǫ] +

⇒ δ(λ, ǫ) = 〈−〉 and δ(〈−〉, b) = 〈+〉

⇒ L(A) = {ǫ, b[ǫ]}

⇒ still, b[a[b[ǫ], ǫ]] is a counterexample

⇒ r = a[b[ǫ], ǫ] represents a missing transition

b[a[�, ǫ]]

ǫ −

b[ǫ] +

a[b[ǫ], ǫ] −

the new transition is δ(〈+〉〈−〉, a) = 〈−〉

⇒ the counterexample a[ǫ, b[b[ǫ]]] may be used twice

1. the decomposition a[ǫ, b[b[ǫ]]] adds b[b[ǫ]] to R

2. a[ǫ, b[b[ǫ]]] a[ǫ, b[ǫ]] adds a[ǫ, b[ǫ]] to R

b[a[�, ǫ]]

ǫ −

b[ǫ] +

a[b[ǫ], ǫ] −

b[b[ǫ]] +

a[ǫ, b[ǫ]] −

The final table, which yields the correct fta.

The proposed approach 14

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

The three cases of Extend (summary):

Extend decomposes t as t = c[[r]] with r ∈ Σ(S) \ S.

Case 1 r /∈ R

⇒ add r to R (and to S if obsC(r) /∈ obsC(S))

Otherwise, there is a unique s ∈ S with obsC(s) = obsC(r).

Case 2 c[[s]] is also a counterexample (check by asking membership queries)

⇒ continue with c[[s]] as the counterexample.

Case 3 c[[s]] is not a counterexample

⇒ the context c proves that c[[r]] and c[[s]] are inequivalent

⇒ add c to C and move r into S.

This is also known as Shapiro’s contradiction backtracking technique.

The proposed approach 15

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

The running time of the learner
• S ⊆ R ⊆ Σ(S) means that R can be represented as a dag with |R| nodes.

• Basically, the recursion of Extend (repeatedly replacing c[[r]] with c[[s]])

takes time linear in the size of the counterexample.

• Most of the time, new transitions are added. Then the dag representing R

and the resulting fta can be updated without recomputing them from scratch.

• More time-consuming recomputations are only required in the seldom case

where a new context is added (recall that |C| ≤ |S|).

If (Σ, Q, δ, F) is the minimial partial fta recognizing U , r the maximum

rank of symbols in Σ, and m the maximum size of counterexamples, then

the overall running time of the learner is O(r · |Q| · |δ| · (|Q| + m)).

This does not include the time required by the teacher.

Efficiency 16

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

How many queries are asked?

Equivalence queries Each iteration of the main loop enlarges S or R

⇒ at most |Q| · |δ| equivalence queries.

Optimization: reuse counterexamples as long as possible.

Membership queries

• |Q| · |δ| entries of the observation table must be filled.

• M = sum of sizes of counterexamples queries are needed to shrink the

counterexamples.

• |Q| queries are needed to determine whether states are accepting.

⇒ at most M + |Q| · (|δ| + 1) membership queries.

Efficiency 17

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Concluding remarks
• The gain regarding efficiency compared with Angluin/Sakakibara depends on

U since the total fta recognizing U has about |Q|r transitions whereas the

partial one sometimes has only |Q| transitions.

• It also depends on the behaviour of the teacher since large counterexamples

to not matter so much in our approach.

• Some open questions:

– Identify language classes where the teacher can find counterexamples that

reveal much about U (= counterexamples that can be reused).

– Can the approach be improved in such a way that fewer equivalence

queries (e.g., only O(|Q|)) are used?

– Learning of weighted tree automata???

Conclusion 18

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Thank

you

for your att
en

tio
n!

Thanks!!! 19

