Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Avoiding Dead States
in Query Learning of Regular Tree Languages

Frank Drewes

work done in collaboration with
Johanna Hogberg

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Introduction - the subject

Algorithmic task Learn an initially unknown regular tree language U,
i.e., construct a finite tree automaton (fta) A such that L(A) =U.

Source of information about U A “teacher’” who can answer

e membership queries — given a tree t, is it true that t € U?
e equivalence queries — given an fta A, is it true that L(A) = U?

Otherwise, return a tree which is a counterexample.

This is the popular MAT model for algorithmic learning (MAT="'minimally
adequate teacher’) introduced by Angluin in 1987.

Introduction 2

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Introduction - the background

e In 1987, Angluin proposed a polynomial algorithm that learns a regular
language U, returning the minimal finite automaton recognizing U.

e In 1990, Sakakibara extended this to regular tree languages. However,
— the running time is polynomial only if the alphabet is fixed,

— the size of counterexamples returned by the teacher affects the running
time (too) heavily, and

— as the fta constructed is total, it may be exponentially larger than the
minimal partial fta recognizing U (unless the alphabet is fixed).

= Sakakibara: Can we avoid dead states? It turns out that our solution to this
problem is in fact a remedy for all three disadvantages.

Introduction 3

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Trees

e Trees are built over a ranked alphabet 3 (i.e., tree = term).
e The notation f(*) indicates that f € ¥ is of rank k.

o A tree with root f(*) and direct subtrees t1,...,t; is written f[t1,..., tx] (or
simply f if Kk =0).

e For aset T of trees, (1) = {f[t1,....tx] | f*¥) € X and ty,...,t, € T}.
e A context is a tree ¢ containing exactly one occurrence of (9.
e If ¢ is a context and t a tree, then c[t] is obtained by substituting ¢ for [J in c.

e A tree language is a set of trees.

Basic notions 4

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Finite tree automata (running example)

U = all trees over a®, b1 ¢(0) in which precisely one child of each a is a b.

Fta:

states ¢, q», ¢’ (where ¢, q, are accepting)
transitions
d(Ne)=q 6(q,0)=q (a,b)=aq O(ag,a)=q (g ,a)=q
€ — @ b — qp b — qp a —q a — q
| | / N\ / N\
q q db q

q db b

O(...,...) =¢" in all other cases (¢’ is a dead state)

Recall Myhill-Nerode: Trees s = ble] and s’ = b[ble|| are equivalent in every

context and need not be distinguished. This is why §*(s) = g, = 6*(s’).

Basic notions)

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

The original idea

Angluin’s idea is inspired by the Myhill-Nerode theorem:

e Trees s, s’ are equivalent with respect to U
iff 0*(s) = 0*(s’) in the minimal fta recognizing U
iff c[s] € U <= ¢[s'] € U for all contexts c.
e The algorithm collects
(a) aset S ={s1,...,Sm} of trees representing equivalence classes and

(b) aset C'={cy,...,cn} of contexts distinguishing between the classes.

The original idea 6

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Intuitively, S = {s1,...,sm} and C ={c1,...,c,} yield an observation table:
ci c2 -+ ¢, -——set C ={ci,...,cy} of contexts
st — o+ e+
S9 _|_ _|_ “ . —

\ records the observation that ¢, [s2] ¢ U

\observations 0obsc(Sm) made for s,

Fta proposed to the teacher:
e Use the observations 0bsc(s1), ..., 0bsc(sy,) (the table rows) as states.

e Define d(obsc(si,) - 0bsc(si,), f) = obsc(flSiys-- -S4])-

o Let obsc(s;) be accepting iff s; € U.

The original idea 7

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Possible table in our running example (final stage):

O o[ale, O]
alplolel]). e ||+ + -]
> correspond to g
e+ — <
bblblel]] || + + +

bible]] || + + + p correspond to ¢

ole ||+ + 4+
ale, e || — - — } corresponds to ¢’

In the automaton constructed, we have, e.g., 6((++ =)(++ +),a) = (++ —)
because obsc(ale, ble]]) = (++ —).

The original idea 3

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Some disadvantages

e If the teacher returns a counterexample s, each subtree of s is added to the
table. This results in

(a) a large table (equivalence classes are represented many times)

(b) large trees (if the teacher returns large counterexamples)
o If obsc(s;) = (—---—), then s; may (!) represent a dead state.

e Note: These disadvantages are of little importance in Angluin’s case.

The original idea 9

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

The proposed approach

We maintain a third set R O S of trees representing transitions.

e We always have S C R C ¥(S) and obsc(R) C obsc(.9).
e As before, each obsc(s), s € 9, is a state.

e Each r = f|s1,...,sk] € R yields the transition
d(obsc(s1)---obsc(sk), f) = obsc(r).
e Additional properties
— Distince s, s” € S yield distinct states, i.e., obsc(s) # obsc(s').
— Distinct 7,7’ € R yield distinct transitions.
- O] <15,

— No tree in s corresponds to a dead state.

The proposed approach 10

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

The main procedure (the “learner”) is a simple loop:

T'=(S,R,C) :=(0,0,0);

loop
A := automaton resulting from T';
t := COUNTEREXAMPLE(A); (ask teacher whether L(A) = U)
if t= 1 then return A (teacher said L(A) =U)
else T :=(ExTenp(T,t))
end loop \the tricky part

The proposed approach 11

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Extending the table (example)
Table after the first step (with R =5 = {¢} and C = 0):
= (N, €) = ()

€ = L(A) = {e} (() is accepting since € € U)
= a counterexample is, e.g., t = bla|b|b[€]], €]]

EXTEND chooses any subtree r € 3(S5) \ S. Say, t = c[[r] = bla[b[bl€]], €]].
Case 1 If r ¢ R, then r represents a missing transition and is added to R:
= 6((),b) = (A, €) = ()

{S{ € = L(A) = all trees of the form b[---ble] - - -]
ble] = bla|b|ble]], €]] continues to be a counterexample

The proposed approach 12

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

R{S{ ¢ Recall: the counterexample is still b[a[b]b[e]], €]].
ble]

Case 2: Decomposition yields ¢t = ¢[r] = bla|b|bl¢]], €]], again, but now r € R!
EXTEND tries to make the counterexample smaller by replacing r with the
unique s € S satisfying 0bsc(s) = obsc(r) (i.e., with s = €).

Membership queries reveal that c[[s] = bla|b|e], €]] is indeed a counterexample.

= set t:=c[s]| and continue with this counterexample.

Case 3: Now, decomposition yields ¢t = c[r] = bla|b|e], €]].
Again, r € R, but now c[s] = blae, €]] fails to be a counterexample.
= the context ¢ = b[a[[]J, €]] distinguishes s from r
= c is added to C and r moved into S.

The proposed approach 13

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

bla[], €]]
ble] +
bla[], €]]
ble] +
alble], €] -
bla[], €]]
ble] +
alble], €] -
b[ble]] +
ale, blel] —

= 0(\,€) = (=) and §((-),b) = (+)

= L(A) = {¢,ble]}

= still, bla[ble], €]] is a counterexample

= 1 = alb|€], €] represents a missing transition

the new transition is §((+)(—),a) =

= the counterexample a,[e b[€]]] may be used twice
1. the decomposition ale, b[be|]] adds b[ble]] to R
2. ale, blble]]] ~ ale, ble]] adds ale, ble]] to R

The final table, which yields the correct fta.

The proposed approach

14

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

The three cases of EXTEND (summary):

EXTEND decomposes t as t = ¢[r] with r € 3(5) \ S.

Casel r¢R
= add r to R (and to S if obsc(r) ¢ obsc(S))

Otherwise, there is a unique s € S with obsc(s) = obsc(r).

Case 2 ¢[s] is also a counterexample (check by asking membership queries)

= continue with c[s] as the counterexample.

Case 3 ¢[s] is not a counterexample
= the context ¢ proves that c[r] and c[s] are inequivalent

= add ¢ to C and move r into S.

This is also known as Shapiro’s contradiction backtracking technique.

The proposed approach 15

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

The running time of the learner
e S C R C X(S) means that R can be represented as a dag with |R| nodes.

e Basically, the recursion of EXTEND (repeatedly replacing c[r] with c[s])
takes time linear in the size of the counterexample.

e Most of the time, new transitions are added. Then the dag representing R
and the resulting fta can be updated without recomputing them from scratch.

e More time-consuming recomputations are only required in the seldom case
where a new context is added (recall that |C| < |S]).

If (X,Q,9, F) is the minimial partial fta recognizing U, r the maximum
rank of symbols in X, and m the maximum size of counterexamples, then
the overall running time of the learner is O(r - |Q] - |d] - (|Q] +m)).
This does not include the time required by the teacher.

Efficiency 16

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

How many queries are asked?

Equivalence queries Each iteration of the main loop enlarges S or R

= at most |@Q)| - |0] equivalence queries.
Optimization: reuse counterexamples as long as possible.

Membership queries

e || -|0| entries of the observation table must be filled.

e M = sum of sizes of counterexamples queries are needed to shrink the
counterexamples.

e |()| queries are needed to determine whether states are accepting.

= at most M + |@Q| - (|6] + 1) membership queries.

Efficiency 17

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Concluding remarks

e The gain regarding efficiency compared with Angluin/Sakakibara depends on
U since the total fta recognizing U has about |@Q|" transitions whereas the

partial one sometimes has only |Q)| transitions.

e |t also depends on the behaviour of the teacher since large counterexamples

to not matter so much in our approach.

e Some open questions:

— ldentify language classes where the teacher can find counterexamples that

reveal much about U (= counterexamples that can be reused).

— Can the approach be improved in such a way that fewer equivalence
queries (e.g., only O(|Q])) are used?

— Learning of weighted tree automata???

Conclusion 18

Frank Drewes Query Learning of Regular Tree Languages Dresden, 11/10 2005

Thanks!!! 19

