
Diplomarbeit

Comparison and Implementation of
MT Evaluation Methods

Lena Morgenroth

2011-07-11

Betreuender Hochschullehrer:
Prof. Dr.-Ing. habil. Heiko Vogler

Institut für Theoretische Informatik
Fakultät Informatik

Technische Universität Dresden

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Diplomarbeit
selbständig und nur unter Zuhilfenahme der angegebenen Lit-
eratur verfasst habe.

Dresden, 11. Juli 2011

Contents

1. Introduction 1

2. Automatic Metrics for Machine Translation Evaluation 3
2.1. General Terms and Concepts . 3

2.1.1. Segment-, Document-, and Corpus-Level Evaluation 3
2.1.2. Tokens, Tokenization, Phrases and N-Grams 4
2.1.3. Text Normalization . 5

2.2. BLEU . 5
2.2.1. The Original BLEU Metric . 6
2.2.2. Discussion . 13
2.2.3. Implementation . 14

2.3. TER . 20

A. Appendix: Documentation of Haskell Functions and Data Types 27
A.1. From Data.Char . 27
A.2. From Data.List . 27
A.3. From Data.Maybe . 29
A.4. From Data.MultiSet . 29
A.5. From System.Console.GetOpt . 30

References 31

1. Introduction

Machine translation (MT) has been an area of research within the field of natural
language processing since the 1950s. After some initial euphoria followed the real-
ization that the goal of the fully automatic high quality translation (FAHQT) was
not going to be reached so easily. Research continued with more realistic goals, such
as developing MT systems that would aid humans in translation by providing at
least informative, intelligible and correct output.

However, the FAHQT still remains a goal, and the process towards that goals
wants to be measured. While any human being can easily and intuitively discern
a very high quality translation from bad ones, the task of actually quantifying the
goodness, measuring progress and comparing systems is anything but trivial.

Intuitively, a good translation is one that is understandable, has the same meaning
as the original text, is grammatically fluent and stylistically adequate. However,
such intuitive notions of translation quality can not systematically be used in the
development and comparison of concrete nowadays systems.

Quantitative metrics have long been used to evaluate machine translation systems
against each other, but involved purely human judgement in the beginning. A variety
of scoring systems has been tried out that allowed quantitative evaluations to be
performed by trained human evaluators. These measures allow for a somewhat fair
comparison, but cannot be used in the development cycle, as they are too slow and
costly.

Automatic metrics have been investigated at least as early as 1991, when Thomp-
son [11] pushed for the exploration of automatic metrics for NLP tasks, especially
for machine translation stating that

...fast, accurate, automatic evaluation methods are of vital importance in
the development process for any large scale natural language processing
application. Historically there has been little emphasis on evaluation in
the Machine Translation community [...], [and] the methods proposed
are not automatic, thus not fast, nor in most cases is there any obvious
way to test their accuracy, that is to say the statistical significance of
their results.

In 2005 Banerjee et.al. describe minimal requirements an automatic MT evalua-
tion method has to fulfill [5]:

In order to be both effective and useful, an automatic metric for MT
evaluation has to satisfy several basic criteria. The primary and most

1

intuitive requirement is that the metric have very high correlation with
quantified human notions of MT quality. Furthermore, a good metric
should be as sensitive as possible to differences in MT quality between
different systems, and between different versions of the same system. The
metric should be consistent (same MT system on similar texts should
produce similar scores), reliable (MT systems that score similarly can
be trusted to perform similarly) and general (applicable to different MT
tasks in a wide range of domains and scenarios).

The first fully automated metric for MT systems was BLEU [8], proposed by
IBM in 2002, which we will describe in detail in section 2.2. It was soon widely
adopted, leading to rapid improvements in machine translation quality due to a
massive speed-up of the development cycle. However, as it also carries a number
of drawbacks, alternative metrics have been proposed since, one of them TER [10]
which we describe in detail in section 2.3. We also provide an implementation for
BLEU.

2

2. Automatic Metrics for Machine
Translation Evaluation

2.1. General Terms and Concepts

2.1.1. Segment-, Document-, and Corpus-Level Evaluation

The general idea behind most MT evaluation methods is comparing the likeness of
the machine translation output and, ideally, several high quality reference transla-
tions (RT). TER and BLEU, which we will describe in more detail in this work, are
examples of such similarity measures.

Independent of the actual method employed, a decision must be made about the
granularity of the measurement. The lowest level commonly evaluated is the segment
level. A segment usually corresponds to a sentence, but might also be a phrase that
does not form a sentence (e.g. a news headline). A segment might also contain
more than one sentence, e.g. if a single sentence in language A is translated into
two sentences in language B. The segment in A would consist of one sentence, while
the corresponding segment in B would consist of two. For MT evaluation, a text
and its translation need to be divided up into corresponding segments.

Evaluation at the segment level is the most useful within the development cycle.
Turian et.al. elaborate on this in section 3.2 of [12]:

Consider how MT system developers would measure the effect of a system
modification on a large development bitext. Typically, they would like to
know not only whether the modification improved performance on some
objective measure, but also why or why not. The fastest way to gain
such insight is to compare the systems before and after output on some
specific text sentences. The sentences that are most likely to highlight
the qualitative effects of the modification to the MT system are those
for which the objective evaluation measure changes the most.

However, segment level evaluation does not necessarily provide a very good insight
into overall translation quality. Indeed, even human judgements on the segment
level do not correlate very well with each other [12] (section 4), calling into question
segment the value of segment level scores when it comes to reliably judging overall
system quality.

Furthermore, the MT system might not work equally well on all kinds of seg-
ments, but depend on factors like the specific vocabulary used in that segment or

3

its grammatical structure. Additionally, the MT evaluation method itself might not
be equally accurate on all kinds of MT - RT segment pairings (see section 2.5.1 for
some examples specific to the BLEU metric).

Evaluating MT quality on a large and diverse test corpus instead gives less weight
to statistical outliers and allows for a more balanced judgement of overall translation
quality of an MT system.

In evaluations such as NIST’s OpenMT Evaluation, this level of granularity is usu-
ally referred to as the system level, implying an evaluation of the MT system itself,
not the system’s translation of a specific segment or a specific document. However,
as has been argued e.g. by Gimenez in [3](p.20), ”the behavior of automatic metrics
depends on a number of variables such as the language pair, the specific domain of
the translation task, and the typology of systems under evaluation.” An MT system
might, e.g. perform much better at translating instruction manuals than at trans-
lating newswire text, due to the different language phenomena that are encountered.
We therefore refer to this level of evaluation as the corpus level instead, underlining
the fact that the resulting score depends not only on the evaluated system and the
MT evaluation measure, but also on the test corpus used for evaluation.

MT evaluation methods additionally often support evaluation at a medium gran-
ularity, the document level. This allows e.g. to identify genres or specific documents
that an MT system has most trouble dealing with or performs best at, without
having to deal with a variance as large as for segment-level scores.

2.1.2. Tokens, Tokenization, Phrases and N-Grams

Most of today’s machine translation evaluation methods compare machine translated
segments to reference translation segments by matching their respective words or
phrases (i.e. sequences of words) with each other. However, the term ”word” is
somewhat inaccurate, as e.g. punctuation is often included in the regular matching
process. For the purpose of this work, we refer to the smallest units for matching
(i.e. words, punctuation, numbers, clitics, ...) as tokens.

Tokenization, i.e. the breaking up of a string of, say, unicode characters, repre-
senting a segment into a sequence of tokens (i.e. substrings, most possibly dropping
white spaces in the process) itself brings up a number of questions. While separa-
tion at word boundaries marked by spaces is straightforward, real world data offers
a number of (sometimes language dependend) cases to be considered.1 We will not
go into details of tokenization, but simply state that allowances should be made
for language dependent adjustments, at least if a special case is frequent or a good
correlation at the segment level is aimed for.

Most current methods for MT evaluation also include matching on longer se-
quences of tokens, i.e. phrases or n-grams. Phrase is a lingistic concept coming
from the structuralist view of grammar. It refers to the constituents of a sentence

1e.g is repeated punctuation ”?!” or ”...” treated as one token or a sequence of tokens? Should all
punctuation be treated as a separate token? What about in ”3.14” or ”-10” or ”A. Einstein”?

4

that consist of more than one word belonging together grammatically , e.g. noun
phrases like ”a nice car” or verb phrases like ”would have said”. As the described
MT evaluation methods do not have any built-in notion of grammar, we use the
term a little more losely. For the purpose of this work, a phrase is a contiguous
subsequence of one or more tokens in some segment. An n-gram is a contiguous
subsequence of exactly n tokens in some segment. In the following, we use the terms
1-gram, unigram and token interchangeably.

We denote segments, phrases and n-grams as sequences of tokens and we use
subscript to indicate a token’s position within a sequence. E.g. take the segment
S = s1s2s3s4, then s1, . . . , s4 are all tokens or unigrams occurring in the segment.
s2s3 is a bigram in S, s1s2s3 is a trigram in S, and both are phrases in S. When
writing about real natural language tokens rather than working on the symbolic
level, we separate tokens within n-grams or phrases using a whitespace character as
a delimiter. The bigrams my selfless and myself less are not identical, even though a
direct concatenation without delimiter would yield myselfless in both cases.

2.1.3. Text Normalization

Additional text normalization steps after tokenization can be applied to machine
and/or reference translation(s) before employing an MT evaluation method. Such
measures range from the very simple (like e.g. lower casing), to elaborate methods
that involve a lot of language specific ressources.

An example of a more far-reaching method is the use of a stemmer. Automatic
stemming reduces different word forms to a canonical form, thus identifying e.g.
”house” with ”houses” and thereby generating additional matches. The use of
stemmers has been shown to greatly increase correlation of automatic MT eval-
uation scores with human judgements for different automatic metrics as early as
2004 in [6]. On the downside, stemmers, like other language specific ressources,
are usually only available for ressource-rich languages that have been the subject of
much NLP research.

Going even further down the text normalization path, it is possible to include the
semantic level as well, computing matches not on words but on concepts, e.g. by
allowing the matching of synonyms. The further we go into text normalization, the
more language-dependent we become. A useful approach is to develop robust general
methods for evaluation that are a reasonable baseline for many or most languages
and that can be extended to make use of more linguistic knowledge as it becomes
available.

2.2. BLEU

In the following sections, we describe and define the BLEU2 method as originally
published by Papineni et.al. [8]. We will discuss the use of BLEU in practice in

2BiLingual Evaluation Understudy

5

section 2.2.2. We document our implementation of the method in section 2.2.3.

2.2.1. The Original BLEU Metric

BLEU is a similarity measure comparing a machine translation against one or more
reference translations. The score can be computed on the segment, document or
corpus level. Comparison takes place segment-wise; matching is done on the word-
and phrase-level.

In the following we will explain and define the computation of the precision score
that underlies BLEU and its modification to allow for the use of multiple reference
translations. As modified n-gram precision does not penalize incomplete transla-
tions, Papineni et.al. introduce a brevity penalty [8], which we describe, before
explaining how BLEU is computed for the document and corpus level.

Unigram Precision

BLEU is based on the precision score, a well known measure when it comes to
evaluating pattern recognition algorithms. Precision is the number of correctly
recognized items in relation to the total number of recognized items that might
include false positives.

In application to MT, precision refers to the ratio of correct n-gram occurrences
in the translation to the total number of n-gram occurrences in the translation. An
n-gram occurrence in the machine translation is correct in the sense of BLEU if an
exactly matching occurrence can be found in any reference translation. An n-gram
occurrence in a reference translation can only be matched against once. As we are
only interested in the match count, it does not matter which of several possible
matches is chosen.

Let us consider the following machine translated segment M and a corresponding
reference translation segment R. Punctuation is treated as a separate token, and
we assume that all text has been transformed to lower case. Correct unigrams in
the machine translation and their matches in the reference are underlined. Either
the first or the second occurrence of more in M can be matched with the single
occurrence of more in R.

M :

R:

A pure precision score on unigrams does not take word order into account at all. For
the purpose of computing the unigram precision score, a segment can be regarded
as a multiset of unigrams.3

3We cannot use sets, as we need to model the number of occurrences of each token in the segment.
We could model unigrams as pairs of a token and its position within the segment instead, in

6

We use calligraphic letters for multisets and indicate the multiplicity of their
elements as superscript, e.g. M = {a1, b4} is a multiset containing a once and b four
times.

Definition 1 (N-Gram Multiset Representation) Let S = s1 . . . sk be
a segment consisting of k tokens. Let n ≥ 1. Then Sn =
{s1 . . . sn , . . . , sk−n+1 . . . sk} denotes its n-gram multiset representation.

The 1-gram multiset representations of M and R are:

M1 = {complex1, dangerous1, decades1, even1, in1, it1,more2, past1, situation1, than1,
the1,was1, ,1}

R1 = {a1, and1, complicated1, dangerous1, decades1, in1, it1,more1, previous1, situation1,
than1, the1,was1}

Finding the multiset C1 of correctly translated 1-grams in a machine translated
segment M with reference to some R is then equivalent to the intersection of their
1-gram multiset representations.

C1 =M1 ∩R1 = {dangerous1, decades1, in1, it1,more1, situation1, than1, the1,was1}.

Note that the unigrams are matched on string identity alone. M ’s the is the article
preceding situation and most likely a false translation, as the reference translation
has the indefinite article a instead. Nevertheless the is an element of C1 and thus
counted as a correct unigram, as it is matched against the the preceding previous
decades in R4. Calculation of the unigram precision score is then straightforward:

Definition 2 (Unigram Precision Score) Let M = m1 . . .mk be a machine
translation segment, R = r1 . . . rl a corresponding reference translation segment
and M1 and R1 their respective 1-gram multiset representations. The 1-gram
precision score of M in reference to R is

p1(M,R) =
|C1|
|M1|

where C1 =M1 ∩R1 is the multiset of correct 1-grams in M .

order to use sets for representation. But position information is not explicitly needed for
computation, hence multisets seem a better fit.

4This shortcoming of BLEU also allows for the incorrect matching of homographs, i.e. semanti-
cally different word forms with identical spelling, e.g. ”can” in ”he can dance” and ”a can of
worms”.

7

In our example, the resulting unigram match count is |C1| = 9, the unigram

precision score is p1 = |C1|
|M1| = 9

14
= 0, 6428.

Multiple Reference Translations and Modified Unigram Precision

Using n-gram precision with a single reference translation, BLEU is too strict on
machine translations that are correct and fluent but happen to use a different vo-
cabulary than the reference. In our example in past decades might be an adequate
alternative translation to in the previous decades, but past is not recognized as a
match for previous. Therefore, in order to better cover the space of possible good
translations, which might differ in phrasing and word-choice, BLEU is designed to
make use of multiple reference translations.

Let us consider an alternative reference translation S and its unigram multiset
representation:

M :

S :

M1 = {complex1, dangerous1, decades1, even1, in1, it1,more2, past1, situation1, than1,

the1,was1, ,1}
S1 = {a1, and1, complex1, dangerous1, decades1, in1,more1, past1, situation1, than1}
C1 =M1 ∩ S1 = {complex1, dangerous1, decades1, in1,more1, past1, situation1, than1}

Matching against S individually, we obtain a unigram precision score of p1 = |C1|
|M1| =

8
14

, which is similar to the score of matching against R, but obtained through different
matches.

For a more realistic measure of correctly translated unigrams in M , we compute
a modified unigram precision score by matching simultaneously against all available
reference translations. A unigram is counted as correct if it has a matching occur-
rence in any of the references. In our example, this allows to recognize both the
phrasing it was from R as well as complex and past from S as correctly translated
unigrams in M .

M :

R:

S :

Note that the second occurrence of more in M is not matched against more in S.
BLEU imposes an upper limit on matches for the same n-gram. An n-gram in M

8

can only be matched as many times as the maximum number of its occurrences in
any single reference translation. If this were not the case, BLEU would not penalize
the overgeneration of words that are very common or only have one translation and
thus occur in many reference translations.

Formally, we model matching with an upper limit as the intersection of M ’s
multiset representation with the union of the multiset representations of all reference
translations.

Definition 3 (Modified Unigram Precision Score) Let M be a machine
translated segment, R1, . . . , Rm corresponding reference translation segments and
M1,R1

1, . . . ,Rm
1 their respective unigram multiset representations. Then M ’s

modified unigram precision score with respect to R1, . . . , Rm is

p′1(M,R1, . . . , Rm) =
|C ′1|
|M1|

, where C ′1 =M1 ∩R1 and R1 =
m⋂
i=1

Ri
1.

For our example, this yields:

M1 = {complex1, dangerous1, decades1, even1, in1, it1,more2, past1, situation1, than1,
the1,was1, ,1}

R1 = {a1, and1, complicated1, dangerous1, decades1, in1, it1,more1, previous1, situation1,
than1, the1,was1}

S1 = {a1, and1, complex1, dangerous1, decades1, in1,more1, past1, situation1, than1}
R1 ∪ S1 = {a1, and1, complex1, complicated1, dangerous1, decades1, in1, it1,more1,

past1, previous1, situation1, than1, the1,was1}
C ′1 =M1∩(R1∪S1) = {complex1, dangerous1, decades1, in1, it1,more1, past1, situation1,
than1, the1,was1}

The resulting modified unigram precision score is p′1(M,R, S) =
|C′1|
|M1| = 11

14
= 0, 7857.

Higher Order N-Grams

Modified unigram precision certainly is a similarity score, albeit a very crude one
for measuring translation quality. Not taking into account word order, it does not
at all capture the well-formedness of the machine translated segment, providing a
perfect score of 1.0 for

M’ :
a and complex dangerous decades in more past situation than

which is neither a fluent nor in any sense an adequate translation, nor intelligible
beyond giving a very vague hint of the topic discussed.

9

So, while modified unigram precision will assign a high score to a translation
that is very similar to a reference translation and thus very good, some very bad
translations might also obtain very high scores, rendering the metric effectively
useless.

To address this problem, BLEU incorporates higher order n-grams up to length
n = 4, i.e. substrings consisting of 2, 3 and 4 consecutive tokens, into the metric.
Computation of the modified precision score using higher order n-grams is identical
to calculating unigram precision:

M :

R:

S :

C ′2 = M2∩(R2∪S2) = {dangerous than1, in past1, it was1,more complex1, past decades1,
than it1,was in1}

p′2(M,R, S) = |C′2|
|M2| = 7

13
= 0, 5385

For 3- and 4-grams we get:

C ′3 = {dangerous than it1, in past decades1, it was in1, than it was1}
p′3(M,R, S) =

|C′
3|

|M3| = 4
12

= 0, 3333

C ′4 = {dangerous than it was1, than it was in1}
p′4(M,R, S) =

|C′
4|

|M4| = 2
11

= 0, 1818

Modified n-gram precision scores are computed up to n = 4 and then combined via
geometric averaging.

Definition 4 (Combined Modified Precision Score) Let p′1, . . . , p
′
4 be

modified 1- to 4-gram precision scores of M with reference to R1, . . . Rm. Then
the combined modified precision score of M with reference to R1, . . . Rm is
defined as:

p′1234 = 4
√
p′1 · p′2 · p′3 · p′4 = exp

[1

4

4∑
n=1

ln p′n

]

In our example, this yields a combined modified precision score of p′1234(M,R, S) =
4

√
11·7·4·2

14·13·12·11 = 0, 4002 for M .

10

Brevity Penalty

With the geometric mean of the modified n-gram precision scores, a notion of cor-
rectness of the n-grams making up the machine translation is captured. However, the
pure precision scores do not evaluate any notion of completeness of the translation.
Take as an example the following incomplete machine translation:

M”:
than in past decades

When scoring M ′′ against S, we find every single n-gram (1 ≤ n ≤ 4) in M ′′ is
correct in the sense that it also occurs in S, yielding a maximal combined score of
p′1234 = 1.0, even though the translation doesn’t offer any meaningful representation
of the content of the original sentence (as concluded from the reference translation).

The usual method of counterbalancing precision with recall cannot be applied
straightforwardly due to BLEU’s reliance on multiple reference translations. In an
MT context and for a single reference translation, n-gram recall would mean the
number of correct n-grams in the MT in relation to the total number of correct n-
grams, i.e. the number of n-grams in the single reference translation: |Cn||Rn| . However,
the definition of recall on multiple reference translations is unclear.

While BLEU can be computed for a single reference translation, much better
correlation with human judgment of translation quality is reported when a number
of different reference translation (four is common) is considered [?]. Hence, Papineni
et.al. chose a different route and define a heuristic brevity penalty that lowers the
score of translations that are too short in comparison to the references.

More precisely, each MT segment is compared in length to the corresponding RT
segment that matches it most closely in length. If two segments of different length
are equally close in length, the shorter RT segment is chosen. The length of this RT
segment is referred to as effective reference length for the MT segment. 5

Definition 5 (Effective Reference Length) Let M be an MT segment and
R1, . . . Rm corresponding RT segments. The effective reference length for M
is defined as |Ri

1| for the shortest Ri, 1 ≤ i ≤ m such the absolute value of
|M1| − |Ri

1| is minimal.

In our example, M ′′ consists of 4 tokens, R of 13 tokens and S of 10 tokens. The
effective reference length is therefore 10 tokens.

If the MT segment is at least as long as its effective reference length, the mul-
tiplicative brevity penalty b factor is 1. As the machine translation gets shorter, b

5The BLEU implementation by NIST which was used for several years in the NIST Open MT
Evaluations used the shortest reference translation instead, but later reverted to the original
definitions. See comments in the header of ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-
v13a.pl (retrieved July 10th, 2011).

11

approaches 0, reducing the overall BLEU score substantially for translations that
are much too short. Formally, the brevity penalty is defined as:

Definition 6 (Brevity Penalty) Let M be a machine translation segment,
M1 its unigram multiset representation and reff its effective reference length.
Then the multiplicative brevity penalty factor b for M is defined as:

b(M, reff) =

{
1, if |M1| > reff

e
(1− reff

|M1|
)
, if |M1| ≤ reff

We can now define the final segment-level BLEU score.

Definition 7 Let M be an MT segment, p′1234(M,R1, . . . , Rm) its combined
modified precision score with reference to R1, . . . , Rm, reff its effective refer-
ence length and b(M, reff) its brevity penalty factor. Then its BLEU score is
defined as:

bleu(M,R1, . . . , Rm) = b(M, reff) · p′1234(M,R1, . . . , Rm)

For our example M ′′ with |M′′
1| = 4 and its effective reference length of 10, this

results in a BLEU score of:

bleu(M ′′, R, S) = e
(1− 10

|M′′
1 |) · p′1234(M ′′, R, S) = e(1−

|10|
|4|) · 1.0 = 0, 2231

distinguishing it clearly from M with |M1| = 14, an effective reference length of 13
and an overall BLEU score of

bleu(M,R, S) = 1 · p′1234(M,R, S) = 0, 4002.

BLEU on Blocks of Text

To determine the BLEU score on the document or corpus level, instead of mere
averaging of segment level scores, a different approach is taken that allows for a
better levelling out of statistical outliers. While matching itself takes place at the
segment level as described above, n-gram match counts are summed up for each n
over the whole document or corpus and then divided by the summed up n-gram
lengths of all MT segments for the entire document or test corpus.

For the brevity penalty, the effective reference length is computed by determining
the effective reference length for each MT segment separately and then summing up
those values for a total effective reference length for the entire document or corpus.

12

These aggregate values are then used to compute a document or corpus level
score using the same definition of BLEU as in the previous section, but using the
aggregate values instead.

2.2.2. Discussion

BLEU in 2002 and its variant NIST, which was proposed by Doddington [2] in the
same year, were the first fully automatic MT evaluation methods that were widely
adopted in the MT community. BLEU and NIST proved to decently correlate with
human judgement when computed over large test sets for a variety of diverse lan-
guage pairs [8](section 5), [7] (section 3), [2] (section 3). They were immediately
incorporated into the NIST Open MT Evaluation alongside human judgements. Au-
tomatic evaluation using BLEU and NIST took the place of the sole official OpenMT
Evaluation score in 2006, effectively replacing human judgements by relegating them
to a bonus scoring for a few select systems6

Following their adoption by one of the most important evaluation events of the
MT world, BLEU and NIST quickly became the most widely used metrics, despite
numerous criticisms being voiced, and various alternative metrics that were proposed
in subsequent years.

NIST itself set out to address two problems with the BLEU metric [2] (section 4):

� the use of geometric averaging for the combination of modified precision scores,
which makes the metric vulnerable to variance due to low match counts for
longer n-gram lengths. As an extreme case, consider the illustrative example
where no 4-gram match can be found within an MT segment. This results in
a modified 4-gram precision score of 0.0 which is propagated by the geometric
average to the segment’s final BLEU score. This effect has an especially dire
impact on BLEU’s segment level correlation with human judgements7. The
way scoring on corpus level is defined prevents this phenomenon from having
a similar effect on the corpus level score. Doddington proposes the use of
arithmetic averaging instead8.

� the equal weighting of all n-grams, regardless of how informative they are.
Doddington proposes an n-gram weight that gives more importance to those
n-grams that occur less frequently in the set of reference translations.

Additional criticisms towards BLEU have been voiced by Lavie et.al. [6] (section
2.1). They claim that

6see Evaluation Plan for NIST Open MT Evaluation 2006, available at
http://www.ldc.upenn.edu/Catalog/docs/LDC2010T17/NISTOpenMT06EvalPlan v4.pdf
(retrieved July 10th, 2011)

7Using a plain geometric average, a segment consisting of less than 4 tokens always has a BLEU
score of 0.0.

8An alternative approach is to use the geometric average with smoothing,
as implemented as an option in NIST’s BLEU-implementation available at
ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13a.pl.

13

� the brevity penalty is poor compensation for the lack of recall. Their experi-
ments suggest that metrics that place much heigher weight on recall than on
precision usually perform better when compare to human judgements than
metrics that place heavy weight on precision.

� the fact that BLEU does not require explicit matches may increase .the like-
lihood of false matches, especially for common function words

Furthermore, according to Turian et.al. [12] a numerical BLEU score might in-
dicate some relative improvement in a system, but it is hard to gain insight into
the nature of the improvement. They call for more intuitive scoring techniques that
deliver results that are more informative for the development cycle.

Gimenez in his 2008 doctoral thesis [3] (section 1.2.1) points to a number of
cases, where translation quality improvements due to the incorporation of linguistic
knowledge were not reflected by the BLEU score. This indicates that there are some
important quality aspects that BLEU does not measure.

These known issues with BLEU have lead to the proposal of host of alternative
metrics, many of which were evaluated in NIST’s Metrics for Machine Transla-
tion Evaluation Challenge in 20089. Select metrics from Metrics MATR 2008 are
described in a 2009 Special Issue on Automated Metrics for Machine Translation
Evaluation of Machine Translation [1]. This issue provides a good overview over
state-of-the-art MT evaluation methods.

2.2.3. Implementation

This section describes the usage and the implementation of a Haskell program that
provides BLEU scoring that is available on the CD that is part of this work.

Usage

The program is called from command line, specifying at least a file containing the
machine translation and a directory containing the corresponding reference trans-
lations. This directory must not contain any other files. Files are simple text files
containing one segment per line. Care has to be taken that corresponding segments
in machine translation and reference translations are at the same line number in the
respective documents, as the implementation uses only the line number to identify
corresponding segments. The syntax for calling the programm is:

Usage: BLEU -m MTFILE -r REFDIR [OPTION]...

The following options are provided:

9Results are publicly available
at http://www.itl.nist.gov/iad/mig//tests/metricsmatr/2008/results/index.html

14

Short Long Parameter Explanation
-h –help print usage information
-m FILE file containing the MT
-r DIR directory containing the RTs

–shortest use shortest reference for brevity
penalty (default: reference closest in
length)

–arithmetic use arithmetic averaging (default: ge-
ometric averaging)

–nosegments suppress segment level scoring
-n –ngrams NVALUES NVALUES is a space-separated list of

n-gram lengths used for scoring (de-
fault ”1 2 3 4”)

The default values reflect the original BLEU definitions from [8] as they are described
in section 2.5.1 of this work.

No option for evalutating at document level is provided. As computation is iden-
tical as for the corpus level, this goal can be realized by passing MT and RT files
that contain segments of only a single document instead of segments from an entire
test corpus of several documents.

Documentation of Implementation

The implementation consists of wo modules, Main (dealing with command line input)
and BLEU (handling preprocessing and computation). We will not explain the Main
module in this paper, as it mainly deals with I/O that is unspecific to BLEU or
MT evaluation in general. We will explain and quote select code that is relevant
for computing the BLEU score. Complete documentation of all functions and data
types from both modules is available can be generated from the source code using
haddock.

Data Types All computation options provided on the command line (or the default
values, if none are provided) are stored in an Options record:

1 data Options = Options {

2 optM :: Maybe FilePath ,

3 optRs :: Maybe FilePath ,

4 optBP :: BP,

5 optComb :: Combine ,

6 optSegs :: Bool ,

7 optNVal :: [Int]

8 }

where BP and Combine encode options for brevity penalty and combination of the
various n-gram modified precision scores:

1 data BP = Shortest | Closest

2 data Combine = GeomAvg | ArithAvg

15

BLEU as originally defined uses the RT segment closest in length to the corre-
sponding MT segment as effective reference length for brevity penalty computation,
but in practice, the shortest reference translation has been used as an alternative
(see section 2.5.1).

BLEU uses geometric averaging, whereas the NIST-variant of BLEU employs
arithmetic averaging. Other options might be defined to extend the program, e.g.
geometric averaging with smoothing as in the NIST-implementation of BLEU10.

Segments are stored in multiset representation. Corresponding segments from all
reference translations are stored together in one list, as they are always processed
together. We use the following type synonyms for greater clarity of code:

1 type MSeg = M.MultiSet String

2 type RSegs = [M.MultiSet String]

We usually represent the entirety of our machine translation as a [MSeg] and all
of our reference translations in their entirety as a [RSegs].

After preprocessing (see the next paragraph) all information necessary for com-
putation is stored in a BLEUInput record:

1 data BLEUInput = BLEUInput { mt :: [[MSeg]]

2 , refs :: [[RSegs]]

3 , mlengths :: [Int]

4 , mNgramLengths :: [[Int]]

5 , rlengths :: [[Int]]

6 , myOpts :: Options

7 }

mt is a list containing several copies of the machine translation, each in n-gram
multiset representation for a different value of n. rt represents the reference trans-
lations in the same way. mlengths and rlengths store the lengths of all machine
translation and reference translation segments, respectively, in tokens. mNgramLengths
additionally stores for each n-gram length specified in optNval myOpts the length
of each machine translation segment in n-grams. myOpts contains the computation
options.

After the computation, results are stored in a BLEUOutput record:

1 data BLEUOutput = BLEUOutput { corpusBLEU :: Float

2 , segBLEUs :: [Float]

3 , corpusTokenLength :: Int

4 , segTokenLengths :: [Int]

5 , corpusERL :: Int

6 , segERLs :: [Int]

7 }

Additionally to the actual scores at corpus and, if evaluated, at segment level, the
length of the machine translation in tokens is provided for the levels evaluated and
the effective reference length for both segment and corpus level.

Preprocessing Preprocessing of input is handled by bleuPacker (see below), which
in turn makes use of three helper functions tokenize, makeNgrams, and nGramLengths.

10ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13a.pl (retrieved July 10th, 2011)

16

tokenize and makeNgrams work on the segment level and are mapped by bleuPacker
over the lists representing the complete translations as needed.

Tokenization is provided by tokenize, which takes as input a string representing
a segment and returns a list of strings each representing a token.

1 tokenize :: String -> [String]

Tokenization is performed using unicode categories. Whitespace is dropped. Sym-
bols are treated as a separate token each. Punctuation is treated as a separate token
as well, unless followed or preceeded by a number.11

makeNgrams takes an integer n and a tokenized segment and returns the segment’s
n-gram multiset representation.

1 makeNgrams :: Int -> [String] -> M.MultiSet String

2 makeNgrams n tokenizedString = makeNgrams ’ M.empty n tokenizedString

3 where makeNgrams ’ intermediate n tokenizedString

4 | (length tokenizedString) < n = intermediate

5 | otherwise = makeNgrams ’ newInter

6 n

7 (tail tokenizedString)

8 where newInter = M.insert (unwords (take n tokenizedString))

9 intermediate

An empty MultiSet is recursively filled with n-grams starting from the beginning
of the tokenized segment.
nGramLengths takes a list of values for n for which the lengths in n-grams of each

segment are to be computed, and the list containing the length of these segments
in tokens. It returns a list containing for each n in nList (line 2) the length of all
segments in n-grams.

1 nGramLengths :: [Int] -> [Int] -> [[Int]]

2 nGramLengths nList lengthList = zipWith ($)

3 mapSubtractFuncs

4 (repeat lengthList)

5 where mapSubtractFuncs = map (map) subtractFuncs

6 subtractFuncs = map (\n x -> x-n+1) nList

As we know that a segment of x tokens contains x-n+1 n-grams, we can use the
already available segment lengths in tokens to compute lengths in n-grams more
efficiently than by calling MultiSet.size on each multiset representation.
bleuPacker ties together the previously defined functions to produce a BLEUInput

record containing all data necessary for the computation of scores.

1 bleuPacker :: Options -> String -> [String] -> BLEUInput

2 bleuPacker opts mRaw rRaw = BLEUInput { mt = m,

3 mlengths = ml ,

4 mNgramLengths = mNGLs ,

5 refs = rs,

6 rlengths = rl ,

7 myOpts = opts

8 }

9 where m = zipWith ($) nGramizeM (repeat tokensM)

10 rs = zipWith ($) nGramizeR (repeat tokensR)

11 nGramizeM = map (map . makeNgrams) (optNVal opts)

12 nGramizeR = map (map) nGramizeM

11This is equivalent to the ’international-tokenization’ option of the BLEU-implementation in
NIST’s mteval-v13a.pl script.

17

13 mNGLs = nGramLengths (optNVal opts) mls

14 mls = map length tokensM

15 rls = map (map length) tokensR

16 tokensM = map tokenize m’

17 tokensR = map (map tokenize) rs’

18 m’ = lines mRaw

19 rs’ = transpose $ map lines rRaw

It takes an Options record as argument followed by a string, representing the
complete machine translation, and a list of strings, each representing a complete
reference translation. MT and RTs are split up into lines at lines 18 and 19, re-
spectively. (Remember that each line represents a segment.) We additionally need
to transpose the list of lists representing the references so that all corresponding
reference segments are grouped together.

Each segment of both MT and RTs is then tokenized in lines 16 and 17.
Lines 14 and 15 compute the length in tokens of every segment.
The length of the machine translation is further processed in line 13 to additionally

yield for each n-gram length specified in optNVal opts the lengths of each segment
of the MT in n-grams.

Line 11 defines nGramizeM as a list of functions, one for each specified n-gram
length. Each function in nGramizeM is of type [[String]] -> [M.MultiSet String],
i.e. it transforms a list of tokenized segments into a list of segments in n-gram mul-
tiset representation. In line 9, each of these functions is applied to a copy of the
tokenized machine translation. Thus, m contains several full multiset representations
of the MT, one for each specified n-gram length.

Lines 12 and 10 perform the same for the reference translations.

Scoring The computation of scores is coordinated by bleuHandler.

1 bleuHandler :: BLEUInput -> BLEUOutput

It calls the functions that perform the various computation steps and aggregates
some values for further processing. Its definition is straightforward and we do not
explain it here. However, we document all functions that are necessary for computing
scores. The central function for scoring the input is bleu.

1 bleu :: Combine -> ([Int], [Int], Int , Int) -> Float

2 bleu comb (matchCounts

3 , lengths_in_ngrams

4 , mLength

5 , efRefLength) = brevityPenalty * combinedPrecs

6 where combinedPrecs = case comb of

7 GeomAvg -> geomAvg precisions

8 ArithAvg -> arithAvg precisions

9 precisions = zipWith (/)

10 (map fromIntegral matchCounts)

11 (map fromIntegral lengths_in_ngrams)

12 brevityPenalty = exp (min 0 (1 - (fromIntegral efRefLength) /

13 (fromIntegral mLength)

14)

15)

It computes a single score. In the following, we explain its use for computing
segment level scores. bleu, as well as all other functions defined in the following, is

18

used in exactly the same way to process aggregate values in order to produce the
corpus level score. However, for greater clarity, we refrain from pointing this out for
every following function.
bleu takes as input a combination option and a quadruple containing:

� the segment’s number of n-gram matches for each n-gram length specified in
the options

� the segment’s lengths in n-grams for each n-gram length

� the length of the segment in tokens

� the segment’s effective reference length

The modified n-gram precision scores are computed in lines 9-11 and combined in
lines 6-8 according to the specified combination option, where

1 geomAvg :: [Float] -> Float

2 arithAvg :: [Float] -> Float

compute the geometric and arithmetic average of a list of Float values.
The brevity penalty is computed in lines 12-15 of bleu. The BP option need not

be evaluated here, because it is taken care of in the effectiveRefLength function:

1 effectiveRefLength :: BP -> Int -> [Int] -> Int

2 effectiveRefLength Shortest

3 _

4 rlengths = minimum rlengths

5 effectiveRefLength Closest

6 mlength

7 rlengths = minimum (head lengthsByDifference)

8 where lengthsByDifference = groupBy equal ’ (sortBy compare ’ rlengths)

9 compare ’ = compare ‘on ‘ (abs . (\x -> x - mlength))

10 equal ’ x y = (compare ’ x y) == EQ

It takes as input the brevity penalty option, the length of an MT segment and
the list containing the lengths of all corresponding RT segments.

In case we use the length of the shortest available RT segment, the length of the
MT segment is of no interest and we choose the shortest RT segment’s length as
effective reference length.

When using the RT segment that is closest in length to the MT segment, in line
9 we define a comparison function that compares the RTs’ lengths using a value’s
numerical distance from the given MT segment length. The RTs lengths are grouped
according to this function in line 8. If several RT lengths are at the same distance,
the lower value is chosen as effective reference length in line 7.

Match counts are also determined on the segment level by matchCounts:

1 matchCount :: MSeg -> RSegs -> Int

2 matchCount m refs = M.size matches

3 where matches = M.intersection m potentialMatches

4 potentialMatches = foldr M.maxUnion M.empty refs

The computation follows the definitions in section 2.5.1 exactly, intersecting the
MT’s multiset n-gram representation with the multiset union over the multiset n-
gram representations of all corresponding RTs.

19

2.3. TER

TER12 was proposed in 2006 by Snover et.al. [10] as an alternative evaluation
method to the commonly used BLEU and NIST metrics. It measures the amount of
editing necessary to transform a machine translation into the reference translation
segment that it is most similar to.

While BLEU measures similarity directly, TER measures difference, with a max-
imal score of 1.0 indicating a very bad translation and a minimal score of 0.0 indi-
cating a very good translation. TER, like BLEU, compares the machine translation
and the reference translation segment by segment. TER scores can be computed for
the segment, document and corpus level.

We describe TER as originally defined in [10] (section 3). In some places we
provide more detail and definitions that are more concise. As the description in
[10] allow for various different solutions to technicalities, our definitions are not
always identical to the ones underlying the freely available implementation by Snover
et.al. 13, which also includes some further optimisations. We will point out known
differences and similarities.

In the following sections, we will first consider the notion of edit distance without
shifts. Computation of minimum edit distance yields an optimal sequence of inser-
tion, deletion and substitution operations transforming - in our case - a machine
translation segment into a corresponding reference translation segment. The oper-
ation sequence implies an alignment between the two segments, which is described
and used as the basis for further computations. We will then introduce and define
phrasal shifts as an additional edit operation. As the exact computation of mini-
mum edit distance with shifts has been shown to be NP-complete [9], Snover et. al.
employ various heuristics for efficient computation, which we explain in subsection
2.3. Finally we will explain how TER makes use of multiple reference translations,
and how computation of document and corpus level scores is realized.

Minimum Edit Distance and Alignments

Minimum edit distance measures the number of insertions, deletions and substitu-
tions necessary to transform one sequence of symbols into another. In our case, we
transform a machine translated segment, i.e. a sequence of tokens, into a sequence
of tokens that is equal to a corresponding reference translation segment14. Minimum
edit distance can be computed efficiently using dynamic programming in O(k · l),
where k and l are the length in tokens of the MT segment and the RT segment. A
good description of this well-known algorithm can be found in [4] (p. 107 ff.)

12Translation Edit Rate, sometimes also rendered as Translation Error Rate
13Available at http://www.umiacs.umd.edu/ snover/terp/ as of July 10th, 2011
14Snover et.al. in their implementation actually compute the transformations necessary to trans-

form a reference into the machine translation segment. This results in the same value for
minimum edit distance. The resulting operation list with operations transforming R into M
can be converted to an operation list as used here by simply replacing each occurrence of I

with D and vice versa.

20

The minimum edit distance algorithm also yields an optimal operation sequence
describing the transformations. Consider the following MT segment M and a cor-
responding reference segment R:

M :
more complex than in the previous decades a complex situation

R:
a more complex situation than in the past decades

The minimum edit distance algorithm yields an operation sequence O = I I S DDD,
where I stands for insertion, D for deletion, S for substitution and for a match.
When the operations are applied to M from left to right, we obtain R:

M: more complex than in the previous decades a complex situation

ins(a): a more complex than in the previous decades a complex situation

match(more): --- " ---

match(complex): --- " ---

ins(situation): a more complex situation than in the previous decades a complex situation

match{than}: --- " ---

match{in}: --- " ---

match{the}: --- " ---

sub{previous -> past}: a more complex situation than in the past decades a complex situation

match{decades}: --- " ---

del{a}: a more complex situation than in the past decades complex situation

del{complex}: a more complex situation than in the past decades situation

del{situation}: a more complex situation than in the past decades

= R: a more complex situation than in the past decades

Different weights can be given to the different operations, and weights can be
made dependend upon the operation’s argument, i.e. the token that is to be in-
serted, deleted, substituted or matched. The operation sequence output by the
algorithm depends on how the weights are set. A weight function thus needs to be
decided upon before computing the minimum edit distance. The original TER uses
uniform weights of 1 for insertions, deletions and substitutions and a weight of 0 for
matches15.

Once we have obtained the operation sequence, we can determine the minimum
edit distance adding up the weights for each operation. For our example, this yields
a minimum edit distance of 6.

The operation sequence also implies an alignment that tells us, which positions
in M and R correspond (i.e. arise through a substitution or a match during the
transformation from M to R). Such alignments can be represented graphically; the
minimum edit distance alignment of our example looks like this:

O: I _ _ I _ _ _ S _ D D D

M: more complex than in the previous decades a complex situation

| | | | | | |

R: a more complex situation than in the past decades

More formally, we define alignments as follows:

15the implementation by Snover et.al. additionally supports the definition of customized weight
functions

21

Definition 8 (Alignment) Let k, l ≥ 1. Let M = m1 . . .mk be an MT segment
and R = r1 . . . rl a corresponding RT segment. Let pos(M) = {1, . . . , k} and
pos(R) = {1, . . . , l} be the set of position in M and R, respectively. An alignment
is a bijection align : apos(M)→ apos(R), where apos(M) ⊆ pos(M), apos(R) ⊆
pos(R) are the subsets of aligned positions in M and R. We also use alignM→R

to refer to an alignment and alignR→M to its inverse.

Note in the example above that aligned words do not have to be equal. While
it seems to make sense semantically that previous and past are aligned to each
other, this is merely a chance effect. We would have obtained the same operation
sequence and thus the same alignment if M had kitten in the 6th position instead
of previous.

The alignment in the example in fact isn’t very good. a and situation remain
unaligned, even though they occur in both M and R. Yet, it is the best that
the minimum edit distance computation can provide. The alignment would be
more reasonable semantically, and the edit distance reduced by 2, if we would allow
crossing alignments. Crossing alignments can be emulated by allowing shifts as an
additional operation.

Phrasal Shifts

Edit distance without shifts does not account very well for the fact that in natu-
ral language, phrases can oftentimes be shifted around within a sentence without
compromising fluency or intelligibility (too much). TER seeks to remedy this by
allowing the shifting of phrases as an additional operation.

In the example above, by shifting the phrase situation towards the left to posi-
tion 2 within M , we obtain:

M’ :
more complex situation complex than in the previous decades a

Running the minimum edit distance algorithm on M ′ and R we obtain the fol-
lowing operation list and alignment.

O: I _ _ _ D _ _ _ S _ D

M’: more complex situation complex than in the previous decades a

| | | | | | | |

R: a more complex situation than in the past decades

This alignment is somewhat more reasonable semantically, and it takes only 4
insertions, deletions and substitutions to transform M ′ into R. TER uses a uniform
weight of 1 for all shift operations regardless of the length of the shifted phrase or
how far it is shifted within M . This leads to an overall edit distance of 5, if we first
perform the shift and then all insertions, deletions and substitutions.

22

Formally, the shift operation can be defined as follows:

Definition 9 (Shift Operation) Let M = m1 . . .mk, k ≥ 1 be a sequence. Let
S = mi . . .mi′ , 1 ≤ i ≤ i′ ≤ k be the subsequence of M to be shifted and |S| =
i′ − i + 1 its length. We define X as the sequence that remains after deleting S
from M , i.e. X = x1 . . . xk−|S| = m1 . . .mi−1mi′+1 . . .mk. Let 1 ≤ p ≤ k−|S|+1
be a position in M . Then the sequence obtained from M by shifting S to position
p is defined as

shift(M,S, p) = x1 . . . xp−1Sxp . . . xk−|S|

For our example we get:

position: 1 2 3 4 5 6 7 8 9 10

M = more complex than in the previous decades a complex situation

S = COMPLEX SITUATION

X = more complex than in the previous decades a

shift(M,S,2) = M’ = more COMPLEX SITUATION complex than in the previous decades a

To obtain semantically reasonable alignments it would suffice to allow for the shifting
of single tokens, as any phrasal shift can be expressed as a series of single token shifts.
However, this would not reduce the edit distance by much; at least it would make it
dependend on the number of words, favoring shorter shifts over longer ones. This is
not in correspondence with our notion of grammaticality that places greater value
on the shifted phrases being grammatical than on their length16.

Heuristics

Optimal computation of minimum edit distance with shifts has been shown to be
NP-complete by [9]. To allow for efficient computation, Snover et.al. use various
heuristics.

The computation of edit distance is divided up into two phases. First a sequence
of beneficial shifts is determined using a greedy search. After performing the shifts,
minimum edit distance is computed17.

In the shift phase, rather than choosing from all possible shifts, electable shifts
must fulfill three conditions. In order to define them, we need the additional concept
of misalignments.

16E.g. ”as I a had too much coffee today, I can’t go to sleep now” and ”I can’t go to sleep now, as
I had too much coffee today” are almost equally correct, despite the considerable length of the
shift necessary to transform one sentence into the other.

17Snover et.al. make use of a beam search with the dynamic programming algorithm for dealing
efficiently with very long segments.

23

Definition 10 (Misalignments) Let M = m1 . . .mk be an MT segment,
R = r1 . . . rl a corresponding RT segment and align : pos(M) → pos(R) an
alignment for M and R.

We say there is a misalignment at position i, 1 ≤ i ≤ k in M with respect to
align if one of the following conditions holds:

1. there is no j such that alignM→R(i) = j (deletion)

2. alignM→R(i) = j and mi 6= rj (substitution)

We say there is a misalignment in R at position j, 1 ≤ j ≤ l with respect to
align if one of the following conditions holds:

1. there is no i with alignR→M(j) = i (insertion)

2. alignR→M(j) = i and rj 6= mi (substitution)

We can now define the electable shifts:

Definition 11 (Electable Shifts) Let M = m1 . . .mk be an MT segment, R =
r1 . . . rl a corresponding RT segment, align : pos(M)→ pos(R) an alignment for
R and M . Let S = mi . . .mi′ be a subsequence of M . Let 1 ≤ p ≤ k − (i′ − i)
and p = alignR→M(j). shift(M,S, p) is an electable shift if all of the following
conditions are met:

� there is a subsequence RS = rj . . . rj′ of R such that S = rj . . . rj′

� there is a misalignment in M in at least one position qM , i ≤ qM ≤ i′

� there is a misalignment in R in at least one position qR, j ≤ qR ≤ j′

TER computes the sequence of beneficial shifts by trying out all electable shift and
computing what the minimum edit distance in insertions, deletions and substitutions
would be after the shift. It chooses the most advantageous shift that improves the
minimum edit distance by at least one. If several shifts yield equal improvements,
then one of the longest shifts is chosen. This process is repeated until no more
beneficial shifts are found.

The sequence of beneficial shifts is then applied to M and the minimum edit
distance in insertions, deletions and substitutions computed for the result. The

24

TER edit distance between M and R is then defined as the total number of shift,
insertion, deletion and substitution operations performed to transform M into R.

If several corresponding RT segments are available for M , the edit distance is
computed individually for each of them and the lowest one is chosen.

The TER score is then defined as follows:

Definition 12 (Segment-level TER Score) . Let M be an MT segment and
R1, . . . , Rm corresponding RT segments. Let ed(M,R1, . . . , Rm) be the TER edit
distance of M with respect to R1, . . . , Rm and l the average length of R1, . . . , Rm.
Then the segment level TER-score is defined as:

ter(M,R1, . . . , Rm) =
ed(M,R1, . . . , Rm)

l

For the corpus- and document-level TER scores an MT segment length weighted
average of all individual segment TER scores is computed.

25

A. Appendix: Documentation of
Haskell Functions and Data Types

The following short documentation was excerpted and adapted from the documen-
tation at haskell.org. Within each section they are listed in alphabetical order.

A.1. From Data.Char 1

isNumber :: Char -> Bool

Returns True for any Unicode space character, and the control characters \t, \n,
\r, \f, \v.

isPunctuation :: Char -> Bool

Selects Unicode punctuation characters, including various kinds of connectors, brack-
ets and quotes.

isSpace :: Char -> Bool

Selects white-space characters in the Latin-1 range. (In Unicode terms, this includes
spaces and some control characters.)

isSymbol :: Char -> Bool

Selects Unicode symbol characters, including mathematical and currency symbols.

A.2. From Data.List 2

filter :: (a -> Bool) -> [a] -> [a]

filter, applied to a predicate and a list, returns the list of those elements that
satisfy the predicate.

foldl :: (a -> b -> a) -> a -> [b] -> a

foldl, applied to a binary operator, a starting value (typically the left-identity of
the operator), and a list, reduces the list using the binary operator, from left to
right. The list must be finite.

1From http://haskell.org/ghc/docs/latest/html/libraries/base/Data-Char.html (retrieved on
July 10th, 2011)

2From http://haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html (retrieved on July
10th, 2011)

27

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr, applied to a binary operator, a starting value (typically the right-identity of
the operator), and a list, reduces the list using the binary operator, from right to
left. The list must be finite.

groupBy :: (a -> a -> Bool) -> [a] -> [[a]]

The groupBy function takes an equality test and a list and returns a list of lists such
that the concatenation of the result is equal to the list argument. Moreover, each
sublist in the result contains only elements that are equal by the supplied equality
test.

head :: [a] -> a

Extracts the first element of a list, which must be non-empty.

length :: [a] -> Int

Returns the length of a finite list.

lines :: String -> [String]

Breaks a string up into a list of strings at newline characters. The resulting strings
do not contain newlines.

map :: (a -> b) -> [a] -> [b]

map f xs is the list obtained by applying f to each element of xs.

minimum :: Ord a => [a] -> a

Returns the minimum value from a list, which must be non-empty, finite, and of an
ordered type.

repeat :: a -> [a]

repeat x is an infinite list, with x the value of every element.

reverse :: [a] -> [a]

reverse xs returns the elements of xs in reverse order. xs must be finite.

sortBy :: (a -> a -> Ordering) -> [a] -> [a]

Sorts a list using the provided comparison function.

sum :: Num a => [a] -> a

Computes the sum of a finite list of numbers.

tail :: [a] -> [a]

Extracts the elements after the head of a list, which must be non-empty.

take :: Int -> [a] -> [a]

take n, applied to a list xs, returns the prefix of xs of length n, or xs itself if n >

length xs.

transpose :: [[a]] -> [[a]]

Transposes the rows and columns of its argument.
For example, transpose [[1,2,3],[4,5,6]] == [[1,4],[2,5],[3,6]]

28

unwords :: [String] -> String

unwords is an inverse operation to words. It joins words with separating spaces.

words :: String -> [String]

Breaks a string up into a list of words, which were delimited by white space.

zip4 :: [a] -> [b] -> [c] -> [d] -> [(a, b, c, d)]

Takes four lists and returns a list of corresponding quadruples. If one input list
is shorter, excess elements of the longer lists are discarded.

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

Generalises zip by zipping with the function given as the first argument, instead of
a tupling function. (zip takes two lists and returns a list of corresponding pairs. If
one input list is short, excess elements of the longer list are discarded.) For example,
zipWith (+) is applied to two lists to produce the list of corresponding sums.

A.3. From Data.Maybe 3

data Maybe a

Encapsulates an optional value. A value of type Maybe a either contains a value of
type a (represented as Just a), or it is empty (represented as Nothing).

fromJust :: Maybe a -> a

Extracts the element out of a Just and throws an error if its argument is Nothing.

A.4. From Data.MultiSet 4

empty :: MultiSet a

The empty multiset.

insert :: Ord a => a -> MultiSet a -> MultiSet a

Insert an element in a multiset.

intersection :: Ord a => MultiSet a -> MultiSet a -> MultiSet a

The intersection of two multisets. The number of occurrences of each element in the
intersection is the minimum of the number of occurrences in the arguments.

maxUnion :: Ord a => MultiSet a -> MultiSet a -> MultiSet a

The union of two multisets. The number of occurences of each element in the union
is the maximum of the number of occurrences in the arguments.

size :: MultiSet a -> Occur

3From http://haskell.org/ghc/docs/latest/html/libraries/base/Data-Maybe.html (retrieved July
10th, 2011

4From http://hackage.haskell.org/packages/archive/multiset/0.2.1/doc/html/Data-
MultiSet.html (retrieved July 10th, 2011)

29

The number of elements in the multiset.

A.5. From System.Console.GetOpt 5

data ArgDescr a

Describes whether an option takes an argument or not, and if so how the argument
is injected into a value of type a. Constructors:

� NoArg a: no argument expected

� ReqArg (String -> a) String: option requires argument

� (Maybe String -> a) String: optional argument

data ArgOrder a

What to do with options following non-options. Constructors:

� RequireOrder: no option processing after first non-option

� Permute: freely intersperse options and non-options

� ReturnInOrder (String -> a): wrap non-options into options

getOpt :: ArgOrder a -> [OptDescr a] -> [String] -> ([a], [String], [String])

Processes the command-line, and returns a triple consisting of the option arguments,
a list of non-options, and a list of error messages. The arguments are:

� The order requirements (see ArgOrder)

� The option descriptions (see OptDescr)

� The actual command line arguments

data OptDescr a

Each OptDescr describes a single option. Constructor: Constructor: Option

[Char] [String] (ArgDescr a) String, where the arguments to Option are:

� list of short option characters

� list of long option strings (without ”–”)

� argument descriptor

� explanation of option for user

usageInfo :: String -> [OptDescr a] -> String

Returns a string describing the usage of a command, derived from the header (first
argument) and the options described by the second argument.

5From http://www.haskell.org/ghc/docs/7.0.3/html/libraries/base-4.3.1.0/System-Console-
GetOpt.html (retrieved July 10th, 2011)

30

Bibliography

[1] Machine translation, 2009.

[2] George Doddington. Automatic evaluation of machine translation quality using n-
gram co-occurrence statistics. In Proceedings of the second international conference
on Human Language Technology Research, HLT ’02, pages 138–145, San Francisco,
CA, USA, 2002.

[3] Jesus Gimenez. Empirical Machine Translation and its Evaluation. PhD thesis,
Universitat Politecnica de Catalunya, 2008.

[4] Daniel Jurafsky and James H. Martin. Speech and Language Processing (2nd Edition).
Prentice Hall, 2008.

[5] Alon Lavie and Abhaya Agarwal. Meteor: An automatic metric for mt evaluation
with improved correlation with human judgments. In Proceedings of the ACL 2005
Workshop on Intrinsic and Extrinsic Evaluation Measures for MT and/or Summa-
rization, pages 65–72, 2005.

[6] Alon Lavie, Kenji Sagae, and Shyamsundar Jayaraman. The significance of recall
in automatic metrics for mt evaluation. In Proceedings of the 6th Conference of the
Association for Machine Translation in the Americas (AMTA 2004), pages 134–143,
2004.

[7] Kishore Papineni, Salim Roukos, Todd Ward, John Henderson, and Florence Reeder.
Corpus-based comprehensive and diagnostic mt evaluation: initial arabic, chinese,
french, and spanish results. In Proceedings of the second international conference on
Human Language Technology Research, HLT ’02, pages 132–137, San Francisco, CA,
USA, 2002.

[8] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the Association for
Computational Linguistics, pages 311–318, 2002.

[9] Dana Shapira and James A. Storer. Edit distance with move operations. In Pro-
ceedings of the 13th Annual Symposium on Combinatorial Pattern Matching, pages
85–98, 2002.

[10] Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and Ralph
Weischedel. A study of translation error rate with targeted human annotation. In Pro-
ceedings of the Association for Machine Translation in the Americas (AMTA 2006),
2006.

31

[11] Henry S. Thompson. Automatic evaluation of translation quality: Outline of method-
ology and report on pilot experiment. In (ISSCO) Proceedings of the Evaluators’
Forum, pages 215–223, 1991.

[12] Joseph Turian, Luke Shen, and I. Dan Melamed. Evaluation of machine translation
and its evaluation. In Proceedings of MT Summit IX, pages 386–393, 2003.

32

