Freitagsseminar 25.01.2019, Kilian Gebhardt
Theorem 3.4.1. Let $G=(N, \Sigma, S, R)$ be an RTG and p be a subproper and subconsistent probability assignment for G. The following problem is NP-hard:

$$
\begin{equation*}
\arg \max _{\xi \in \mathrm{T}_{\Sigma}} \mathrm{P}(\xi \mid G, p) \tag{3.3}
\end{equation*}
$$

Proof sketch. Following Sima'an (2002) we reduce 3-SAT to the following decision problem: "Given a subprobabilistic RTG (G, p) and $Q \in[0,1]$, is there $\xi \in \mathrm{T}_{\Sigma}$ such that $\mathrm{P}(\xi \mid G, p)>Q$?"

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ for some $n \in \mathbb{N}$ be a set of variables and let $\operatorname{Lit}(X)=X \cup\{\neg x \mid$ $x \in X\}$ be the set of literals. Let $k \in \mathbb{N}$ and $F=\bigwedge_{i=1}^{k} C_{i}$ be a 3 -SAT formula where each $C_{i}=\left(u_{1}^{i} \vee u_{2}^{i} \vee u_{3}^{i}\right)$ for $u_{j}^{i} \in \operatorname{Lit}(X)$. For each $j \in[n]$, let n_{j} denote the number of occurrences of x_{j} or $\neg x_{j}$ in F. W.l.o.g. we assume that $n_{j}>0$ for each $j \in[n]$.

We construct a subprobabilistic RTG (G, p) with $G=(N, \Sigma, R, S)$ as follows:

- $N=\{S\} \cup\left\{C_{i} \mid i \in[k]\right\} \cup\left\{U_{j}^{i} \mid i \in[k], j \in[3]\right\}$.
- $\Sigma=\{f\} \cup\left\{c_{i} \mid i \in[k]\right\} \cup\left\{u_{j}^{i} \mid i \in[k], j \in[3]\right\} \cup\{\top, \perp\}$ with $\operatorname{rk}(f)=k, \operatorname{rk}\left(c_{i}\right)=3$, $\operatorname{rk}\left(u_{j}^{i}\right)=1$, and $\operatorname{rk}(\top)=0=\operatorname{rk}(\perp)$.
- R is such that

1. it contains, for each $j \in[n]$ and $b \in\{T, \perp\}$, the rule

$$
S \rightarrow f\left(c_{1}\left(\xi_{1}^{1}, \ldots, \xi_{3}^{1}\right), \ldots, c_{k}\left(\xi_{1}^{k}, \ldots, \xi_{3}^{k}\right)\right)
$$

with probability $p_{j}=\theta \cdot\left(\frac{1}{2}\right)^{n_{j}}$ such that, for each $i^{\prime} \in[k]$ and $j^{\prime} \in[3]$, we have

$$
\xi_{j^{\prime}}^{i^{\prime}}=\left\{\begin{array}{ll}
u_{j^{\prime}}^{i^{\prime}}(T) & \text { if } u_{j^{\prime}}^{i^{\prime}}=x_{j} \wedge b=\top \\
u_{j^{\prime}}^{i^{\prime}}(\perp) & \text { if } u_{j^{\prime}}^{i^{\prime}}=x_{j} \wedge b=\perp \\
\left.u_{j^{\prime}}^{i^{\prime}} \perp\right) & \text { if } u_{j^{\prime}}^{i^{\prime}}=\neg x_{j} \wedge b=\top \\
u_{j^{\prime}}^{i^{\prime}}(\mathrm{T}) & \text { if } u_{j^{\prime}}^{i^{\prime}}=\neg x_{j} \wedge b=\perp \\
U_{j^{\prime}}^{i^{\prime}} & \text { otherwise }
\end{array} .\right.
$$

2. it contains the rule $S \rightarrow f\left(C_{1}, \ldots, C_{k}\right)$ with probability $p_{0}=1-2 \sum_{j \in[n]} \theta \cdot\left(\frac{1}{2}\right)^{n_{j}}$.
3. for each $i \in[k]$, there are rules $C_{i} \rightarrow c_{i}\left(u_{1}^{i}(\mathrm{~T}), U_{2}^{i}, U_{3}^{i}\right), C_{i} \rightarrow c_{i}\left(U_{1}^{i}, u_{2}^{i}(\mathrm{~T}), U_{3}^{i}\right)$, and $C_{i} \rightarrow c_{i}\left(U_{1}^{i}, U_{2}^{i}, u_{3}^{i}(\top)\right)$ with probability $\frac{1}{3}$ each.
4. for each $i \in[k]$ and $j \in[n]$, there are rules $U_{j}^{i} \rightarrow u_{j}^{i}(\mathrm{~T})$ and $U_{j}^{i} \rightarrow u_{j}^{i}(\perp)$ with probability $\frac{1}{2}$ each.

Note that each tree $\xi \in L(G)$ represents F with a truth value \top or \perp assigned to each occurrence of a literal. Each derivation d of a tree ξ is has one of following two forms:
(a) d starts with a rule of type 1 for some j followed by $3 k-n_{j}$ rules of type 4 . In this case all the assignments for literals based on x_{j} are consistent. The probability of this derivation is $p_{j} \cdot\left(\frac{1}{2}\right)^{3 k-n_{j}}=\theta \cdot\left(\frac{1}{2}\right)^{3 k}$. There are at most n derivations of this kind for ξ.
(b) d starts with a rule of type 2 , followed by k rules of type 3 , followed by $2 k$ rules of type 4. If such an derivation exists, each clause of f contains at least one literal that assigned the value T. The probability of d is $p_{0} \cdot\left(\frac{1}{3}\right)^{k} \cdot\left(\frac{1}{2}\right)^{2 k}$. There are at most 3^{k} derivations of this kind for ξ.
We select θ and Q such that $P(\xi \mid G, p) \geq Q$ if and only if ξ represents a variable assignment that satisfies F. Note that such a ξ must have n derivations of type (a) and at least one derivation of type (b). Hence, we choose $Q=n \cdot \theta \cdot\left(\frac{1}{2}\right)^{3 k}+p_{0} \cdot\left(\frac{1}{3}\right)^{k} \cdot\left(\frac{1}{2}\right)^{2 k}$. Moreover, we set θ such that additional derivations of type (b) can not make up for missing ones of type (a):

$$
\begin{aligned}
& 3^{k} \cdot p_{0} \cdot\left(\frac{1}{3}\right)^{k} \cdot\left(\frac{1}{2}\right)^{2 k}<\theta \cdot\left(\frac{1}{2}\right)^{3 k} \\
\Longrightarrow & \left(1-2 \sum_{j \in[n]} \theta\left(\frac{1}{2}\right)^{n_{j}}\right)<\theta \cdot\left(\frac{1}{2}\right)^{k} \\
\Longrightarrow \quad & \frac{1}{\left(\frac{1}{2}\right)^{k}+2 \sum_{j \in[n]}\left(\frac{1}{2}\right)^{n_{j}}}<\theta
\end{aligned}
$$

(lower bound)

On the other hand, we have to construct a subproper RTG. Therefore we may choose θ such that $0 \leq p_{j} \leq 1$ for each $j \geq 0$. Thus, for $j=0$ we have $-1 \leq p_{0}-1 \leq 0$, i.e., $1 \geq 2 \sum_{j \in[n]} \theta\left(\frac{1}{2}\right)^{n_{j}} \geq 0$ and thus:

$$
0 \leq \theta \leq \frac{1}{2 \sum_{j \in[n]}\left(\frac{1}{2}\right)^{n_{j}}} \quad \quad \text { (upper bound) }
$$

For $j \in[n]$, we obtain $0 \leq \theta \leq 2^{n_{j}}$. This upper bound on θ is less strict than the one previously stated:

$$
2^{n_{j}} \cdot 2 \cdot \sum_{j^{\prime} \in[n]}\left(\frac{1}{2}\right)^{n_{j^{\prime}}}=\underbrace{2^{n_{j}} \cdot 2 \cdot\left(\frac{1}{2}\right)^{n_{j}}}_{2}+\underbrace{2^{n_{j}} \cdot 2 \cdot \sum_{j^{\prime} \in[n]: j^{\prime} \neq j}\left(\frac{1}{2}\right)^{n_{j^{\prime}}}}_{\geq 0} \geq 2>1
$$

and thus $2^{n_{j}}>\left(2 \sum_{j^{\prime} \in[n]}\left(\frac{1}{2}\right)^{n_{j^{\prime}}}\right)^{-1}$. A choice of θ that satisfies (lower bound) and (upper bound) is obviously feasible.

Note that the construction of (G, p) is polynomial in the size of F.
Now, if we can solve (3.3), then we can solve decision problem by checking if $\mathrm{P}(\hat{\xi} \mid$ $G, p)>Q$ for $\hat{\xi}=\arg \max _{\xi \in \mathrm{T}_{\Sigma}} \mathrm{P}(\xi \mid G, p)$. Computing $\mathrm{P}(\hat{\xi} \mid G, p)$ can be done in polynomial time and space by intersecting G and ξ and computing the inside weight of the start symbol of the resulting grammar. Consequently, we can decide the satisfiability of F. Hence, computing (3.3) is NP-hard.

Reference Khalil Sima'an (Aug. 2002). "Computational Complexity of Probabilistic Disambiguation". In: Grammars 5.2, pp. 125-151. ISSN: 1572-848X. DOI: 10.1023/A: 1016340700671. URL: https://doi.org/10.1023/A:1016340700671

