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Theorem 3.4.1. Let G = (N,Σ, S, R) be an RTG and p be a subproper and subconsis-
tent probability assignment for G. The following problem is NP-hard:

arg maxξ∈TΣ
P(ξ | G, p) . (3.3)

Proof sketch. Following Sima’an (2002) we reduce 3-SAT to the following decision prob-
lem: “Given a subprobabilistic RTG (G, p) and Q ∈ [0, 1], is there ξ ∈ TΣ such that
P(ξ | G, p) > Q?”

Let X = {x1, . . . , xn} for some n ∈ N be a set of variables and let Lit(X) = X ∪ {¬x |
x ∈ X} be the set of literals. Let k ∈ N and F =

�k
i=1Ci be a 3-SAT formula where

each Ci = (ui1 ∨ ui2 ∨ ui3) for u
i
j ∈ Lit(X). For each j ∈ [n], let nj denote the number of

occurrences of xj or ¬xj in F . W.l.o.g. we assume that nj > 0 for each j ∈ [n].

We construct a subprobabilistic RTG (G, p) with G = (N,Σ, R, S) as follows:

• N = {S} ∪ {Ci | i ∈ [k]} ∪ {U i
j | i ∈ [k], j ∈ [3]}.

• Σ = {f} ∪ {ci | i ∈ [k]} ∪ {uij | i ∈ [k], j ∈ [3]} ∪ {�,⊥} with rk(f) = k, rk(ci) = 3,

rk(uij) = 1, and rk(�) = 0 = rk(⊥).

• R is such that

1. it contains, for each j ∈ [n] and b ∈ {�,⊥}, the rule

S → f(c1(ξ
1
1 , . . . , ξ

1
3), . . . , ck(ξ

k
1 , . . . , ξ

k
3 ))

with probability pj = θ ·
�
1
2

�nj such that, for each i� ∈ [k] and j� ∈ [3], we have

ξi
�
j� =





ui
�
j�(�) if ui

�
j� = xj ∧ b = �

ui
�
j�(⊥) if ui

�
j� = xj ∧ b = ⊥

ui
�
j�(⊥) if ui

�
j� = ¬xj ∧ b = �

ui
�
j�(�) if ui

�
j� = ¬xj ∧ b = ⊥

U i�
j� otherwise

.

2. it contains the rule S → f(C1, . . . , Ck) with probability p0 = 1−2
�

j∈[n] θ·
�
1
2

�nj .

3. for each i ∈ [k], there are rules Ci → ci(u
i
1(�), U i

2, U
i
3), Ci → ci(U

i
1, u

i
2(�), U i

3),
and Ci → ci(U

i
1, U

i
2, u

i
3(�)) with probability 1

3 each.

4. for each i ∈ [k] and j ∈ [n], there are rules U i
j → uij(�) and U i

j → uij(⊥) with

probability 1
2 each.

Note that each tree ξ ∈ L(G) represents F with a truth value � or ⊥ assigned to each
occurrence of a literal. Each derivation d of a tree ξ is has one of following two forms:
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(a) d starts with a rule of type 1 for some j followed by 3k− nj rules of type 4. In this
case all the assignments for literals based on xj are consistent. The probability of

this derivation is pj ·
�
1
2

�3k−nj = θ ·
�
1
2

�3k
. There are at most n derivations of this

kind for ξ.

(b) d starts with a rule of type 2, followed by k rules of type 3, followed by 2k rules of
type 4. If such an derivation exists, each clause of f contains at least one literal

that assigned the value �. The probability of d is p0 ·
�
1
3

�k ·
�
1
2

�2k
. There are at

most 3k derivations of this kind for ξ.

We select θ and Q such that P (ξ | G, p) ≥ Q if and only if ξ represents a variable
assignment that satisfies F . Note that such a ξ must have n derivations of type (a) and

at least one derivation of type (b). Hence, we choose Q = n · θ ·
�
1
2

�3k
+ p0 ·

�
1
3

�k ·
�
1
2

�2k
.

Moreover, we set θ such that additional derivations of type (b) can not make up for
missing ones of type (a):

3k · p0 ·
�
1

3
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·
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2
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�
1
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θ

�
1

2

�nj

) < θ ·
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2

�k

=⇒ 1
�
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+ 2

�
j∈[n]

�
1
2

�nj
< θ (lower bound)

On the other hand, we have to construct a subproper RTG. Therefore we may choose
θ such that 0 ≤ pj ≤ 1 for each j ≥ 0. Thus, for j = 0 we have −1 ≤ p0 − 1 ≤ 0, i.e.,
1 ≥ 2

�
j∈[n] θ

�
1
2

�nj ≥ 0 and thus:

0 ≤ θ ≤ 1

2
�

j∈[n]
�
1
2

�nj
(upper bound)

For j ∈ [n], we obtain 0 ≤ θ ≤ 2nj . This upper bound on θ is less strict than the one
previously stated:

2nj · 2 ·
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�nj�
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�
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2
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2

+2nj · 2 ·
�

j�∈[n] : j� �=j
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and thus 2nj >
�
2
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. A choice of θ that satisfies (lower bound) and

(upper bound) is obviously feasible.
Note that the construction of (G, p) is polynomial in the size of F .
Now, if we can solve (3.3), then we can solve decision problem by checking if P(ξ̂ |

G, p) > Q for ξ̂ = arg maxξ∈TΣ
P(ξ | G, p). Computing P(ξ̂ | G, p) can be done in

polynomial time and space by intersecting G and ξ and computing the inside weight of
the start symbol of the resulting grammar. Consequently, we can decide the satisfiability
of F . Hence, computing (3.3) is NP-hard.
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