
1/17

On the internals of disco-dop
How to implement a state-of-the-art LCFRS parser

Kilian Gebhardt

Grundlagen der Programmierung, Fakultät Informatik, TU Dresden

November 16, 2018

2/17

Motivation

I LCFRS parsing is hard (O(nm∗k) where n, m, and k are
sentence length, maximum numbers of nonterminals in a rule,
and the fanout of the grammar, respectively.)

I Exact inference with real world LCFRS might feasible up to
length 30 (see Angelov and Ljunglöf 2014)?

I We want to parse longer sentences and short sentences faster!

2/17

Motivation

I LCFRS parsing is hard (O(nm∗k) where n, m, and k are
sentence length, maximum numbers of nonterminals in a rule,
and the fanout of the grammar, respectively.)

I Exact inference with real world LCFRS might feasible up to
length 30 (see Angelov and Ljunglöf 2014)?

I We want to parse longer sentences and short sentences faster!

2/17

Motivation

I LCFRS parsing is hard (O(nm∗k) where n, m, and k are
sentence length, maximum numbers of nonterminals in a rule,
and the fanout of the grammar, respectively.)

I Exact inference with real world LCFRS might feasible up to
length 30 (see Angelov and Ljunglöf 2014)?

I We want to parse longer sentences and short sentences faster!

3/17

disco-dop

I Parsing framework developed by Andreas van Cranenburgh
(cf. Cranenburgh, Scha, and Bod 2016)

I Uses discontinuous data-oriented model (discontinuous
tree-substitution grammar) at its core.

I Employs a coarse-to-fine pipeline for parsing:

1. PCFG stage
2. LCFRS stage
3. DOP stage

3/17

disco-dop

I Parsing framework developed by Andreas van Cranenburgh
(cf. Cranenburgh, Scha, and Bod 2016)

I Uses discontinuous data-oriented model (discontinuous
tree-substitution grammar) at its core.

I Employs a coarse-to-fine pipeline for parsing:

1. PCFG stage
2. LCFRS stage
3. DOP stage

3/17

disco-dop

I Parsing framework developed by Andreas van Cranenburgh
(cf. Cranenburgh, Scha, and Bod 2016)

I Uses discontinuous data-oriented model (discontinuous
tree-substitution grammar) at its core.

I Employs a coarse-to-fine pipeline for parsing:

1. PCFG stage
2. LCFRS stage
3. DOP stage

4/17

The coarse-to-fine pipeline (grammars)

I The DOP model is equivalent to marginalizing over a latently
annotated LCFRS (fine LCFRS)
(see Goodman 2003 for continuous case).

I The original treebank t1 is binarized/Markovized (= t2) and a
coarse prob. LCFRS is induced. (Grammar is binarized,
simple, ordered, may contain chain rules)

I Discontinuity in t2 is resolved by splitting categories. After
binarizing again, we obtain t3 and induce a PCFG. (Grammar
is binarized, simple, may contain chain rules.)

I Some preprocessing is applied to lexical rules to handle
unknown words. (Stanford signatures1)

1See unknownword6 and unknownword4 in
https://github.com/andreasvc/disco-dop/blob/master/discodop/lexicon.py

https://github.com/andreasvc/disco-dop/blob/master/discodop/lexicon.py
https://github.com/andreasvc/disco-dop/blob/master/discodop/lexicon.py

4/17

The coarse-to-fine pipeline (grammars)

I The DOP model is equivalent to marginalizing over a latently
annotated LCFRS (fine LCFRS)
(see Goodman 2003 for continuous case).

I The original treebank t1 is binarized/Markovized (= t2) and a
coarse prob. LCFRS is induced. (Grammar is binarized,
simple, ordered, may contain chain rules)

I Discontinuity in t2 is resolved by splitting categories. After
binarizing again, we obtain t3 and induce a PCFG. (Grammar
is binarized, simple, may contain chain rules.)

I Some preprocessing is applied to lexical rules to handle
unknown words. (Stanford signatures1)

1See unknownword6 and unknownword4 in
https://github.com/andreasvc/disco-dop/blob/master/discodop/lexicon.py

https://github.com/andreasvc/disco-dop/blob/master/discodop/lexicon.py
https://github.com/andreasvc/disco-dop/blob/master/discodop/lexicon.py

4/17

The coarse-to-fine pipeline (grammars)

I The DOP model is equivalent to marginalizing over a latently
annotated LCFRS (fine LCFRS)
(see Goodman 2003 for continuous case).

I The original treebank t1 is binarized/Markovized (= t2) and a
coarse prob. LCFRS is induced. (Grammar is binarized,
simple, ordered, may contain chain rules)

I Discontinuity in t2 is resolved by splitting categories. After
binarizing again, we obtain t3 and induce a PCFG. (Grammar
is binarized, simple, may contain chain rules.)

I Some preprocessing is applied to lexical rules to handle
unknown words. (Stanford signatures1)

1See unknownword6 and unknownword4 in
https://github.com/andreasvc/disco-dop/blob/master/discodop/lexicon.py

https://github.com/andreasvc/disco-dop/blob/master/discodop/lexicon.py
https://github.com/andreasvc/disco-dop/blob/master/discodop/lexicon.py

4/17

The coarse-to-fine pipeline (grammars)

I The DOP model is equivalent to marginalizing over a latently
annotated LCFRS (fine LCFRS)
(see Goodman 2003 for continuous case).

I The original treebank t1 is binarized/Markovized (= t2) and a
coarse prob. LCFRS is induced. (Grammar is binarized,
simple, ordered, may contain chain rules)

I Discontinuity in t2 is resolved by splitting categories. After
binarizing again, we obtain t3 and induce a PCFG. (Grammar
is binarized, simple, may contain chain rules.)

I Some preprocessing is applied to lexical rules to handle
unknown words. (Stanford signatures1)

1See unknownword6 and unknownword4 in
https://github.com/andreasvc/disco-dop/blob/master/discodop/lexicon.py

https://github.com/andreasvc/disco-dop/blob/master/discodop/lexicon.py
https://github.com/andreasvc/disco-dop/blob/master/discodop/lexicon.py

5/17

The coarse-to-fine pipeline (application)

I Parse with stage s resulting in chart.

I If successful, obtain a whitelist of items from chart:

I k = 0: select all items that are part of successful derivation
I 0 < k < 1: select each item i , where α(i) · β(i) ≥ k
I k ≥ 1: select all items that occur in k-best derivations

(For PCFG → PLCFRS k = 10, 000 is the default.)

I Next stage s + 1 prunes item i , if coarsify(i) is not in whitelist.

I If unsuccessful, stop parsing and greedily/recursively select the
largest possible items from chart as fallback strategy.

5/17

The coarse-to-fine pipeline (application)

I Parse with stage s resulting in chart.
I If successful, obtain a whitelist of items from chart:

I k = 0: select all items that are part of successful derivation
I 0 < k < 1: select each item i , where α(i) · β(i) ≥ k
I k ≥ 1: select all items that occur in k-best derivations

(For PCFG → PLCFRS k = 10, 000 is the default.)

I Next stage s + 1 prunes item i , if coarsify(i) is not in whitelist.

I If unsuccessful, stop parsing and greedily/recursively select the
largest possible items from chart as fallback strategy.

5/17

The coarse-to-fine pipeline (application)

I Parse with stage s resulting in chart.
I If successful, obtain a whitelist of items from chart:

I k = 0: select all items that are part of successful derivation

I 0 < k < 1: select each item i , where α(i) · β(i) ≥ k
I k ≥ 1: select all items that occur in k-best derivations

(For PCFG → PLCFRS k = 10, 000 is the default.)

I Next stage s + 1 prunes item i , if coarsify(i) is not in whitelist.

I If unsuccessful, stop parsing and greedily/recursively select the
largest possible items from chart as fallback strategy.

5/17

The coarse-to-fine pipeline (application)

I Parse with stage s resulting in chart.
I If successful, obtain a whitelist of items from chart:

I k = 0: select all items that are part of successful derivation
I 0 < k < 1: select each item i , where α(i) · β(i) ≥ k

I k ≥ 1: select all items that occur in k-best derivations

(For PCFG → PLCFRS k = 10, 000 is the default.)

I Next stage s + 1 prunes item i , if coarsify(i) is not in whitelist.

I If unsuccessful, stop parsing and greedily/recursively select the
largest possible items from chart as fallback strategy.

5/17

The coarse-to-fine pipeline (application)

I Parse with stage s resulting in chart.
I If successful, obtain a whitelist of items from chart:

I k = 0: select all items that are part of successful derivation
I 0 < k < 1: select each item i , where α(i) · β(i) ≥ k
I k ≥ 1: select all items that occur in k-best derivations

(For PCFG → PLCFRS k = 10, 000 is the default.)

I Next stage s + 1 prunes item i , if coarsify(i) is not in whitelist.

I If unsuccessful, stop parsing and greedily/recursively select the
largest possible items from chart as fallback strategy.

5/17

The coarse-to-fine pipeline (application)

I Parse with stage s resulting in chart.
I If successful, obtain a whitelist of items from chart:

I k = 0: select all items that are part of successful derivation
I 0 < k < 1: select each item i , where α(i) · β(i) ≥ k
I k ≥ 1: select all items that occur in k-best derivations

(For PCFG → PLCFRS k = 10, 000 is the default.)

I Next stage s + 1 prunes item i , if coarsify(i) is not in whitelist.

I If unsuccessful, stop parsing and greedily/recursively select the
largest possible items from chart as fallback strategy.

5/17

The coarse-to-fine pipeline (application)

I Parse with stage s resulting in chart.
I If successful, obtain a whitelist of items from chart:

I k = 0: select all items that are part of successful derivation
I 0 < k < 1: select each item i , where α(i) · β(i) ≥ k
I k ≥ 1: select all items that occur in k-best derivations

(For PCFG → PLCFRS k = 10, 000 is the default.)

I Next stage s + 1 prunes item i , if coarsify(i) is not in whitelist.

I If unsuccessful, stop parsing and greedily/recursively select the
largest possible items from chart as fallback strategy.

5/17

The coarse-to-fine pipeline (application)

I Parse with stage s resulting in chart.
I If successful, obtain a whitelist of items from chart:

I k = 0: select all items that are part of successful derivation
I 0 < k < 1: select each item i , where α(i) · β(i) ≥ k
I k ≥ 1: select all items that occur in k-best derivations

(For PCFG → PLCFRS k = 10, 000 is the default.)

I Next stage s + 1 prunes item i , if coarsify(i) is not in whitelist.

I If unsuccessful, stop parsing and greedily/recursively select the
largest possible items from chart as fallback strategy.

6/17

Representation of LCFRS rules I

A→ 〈x (1)1 x
(2)
1 x

(1)
2 , x

(2)
2 x

(1)
3 x

(1)
4 〉(B,C)

6/17

Representation of LCFRS rules I

A→ 〈x (1)1︸︷︷︸
0
0

x
(2)
1︸︷︷︸
1
0

x
(1)
2︸︷︷︸
0
1

, x
(2)
2︸︷︷︸
1
0

x
(1)
3︸︷︷︸
0
0

x
(1)
4︸︷︷︸
0
1

〉(B,C) ︸︷︷︸
i−1 if x

(i)
j

1 if end of component

6/17

Representation of LCFRS rules I

A→ 〈x (1)1︸︷︷︸
0
0

x
(2)
1︸︷︷︸
1
0

x
(1)
2︸︷︷︸
0
1

, x
(2)
2︸︷︷︸
1
0

x
(1)
3︸︷︷︸
0
0

x
(1)
4︸︷︷︸
0
1

〉(B,C) ︸︷︷︸
i−1 if x

(i)
j

1 if end of component

struct ProbRule { // total: 32 bytes.

double prob; // 8 bytes

uint32_t lhs; // 4 bytes

uint32_t rhs1; // 4 bytes

uint32_t rhs2; // 4 bytes

uint32_t args; // 4 bytes => 32 max vars per rule

uint32_t lengths; // 4 bytes => same

uint32_t no; // 4 bytes

};

e.g. args = 0b001010 and lengths = 0b100100.

7/17

Representation of LCFRS rules II

2. A→ 〈x (1)1 , x
(1)
2 x

(1)
3 〉(B) (same, with rhs2 = 0)

3. A→ 〈α〉

stored via a map Σ→ vector<uint32_t> and a
vector<LexicalRule> where:

struct LexicalRule {

double prob;

uint32_t lhs;

};

7/17

Representation of LCFRS rules II

2. A→ 〈x (1)1 , x
(1)
2 x

(1)
3 〉(B) (same, with rhs2 = 0)

3. A→ 〈α〉

stored via a map Σ→ vector<uint32_t> and a
vector<LexicalRule> where:

struct LexicalRule {

double prob;

uint32_t lhs;

};

8/17

PCFG parsing I
bottom-up chart parsing (based on Bodenstab 2009’s fast
grammar loop)

1 populate_pos(chart, grammar, sentence)

2

3 for span in range(2, n+1):

4 for left in range(1, n + 1 - span):

5 right = left + span

6 for lhs in grammar.nonts:

7 for rule in grammar.rules[lhs]:

8 for mid in range(left + 1, right):

9 p1 = chart.getprob(left, mid, rule.rhs1)

10 p2 = chart.getprob(mid, right, rule.rhs2)

11 p_new = rule.prob + p1 + p2

12 if chart.updateprob(left, right, p_new):

13 chart.add_edge(...)

14

15 applyunary(left, right, chart, grammar)

9/17

PCFG parsing II

beam search (based on Zhang et al. 2010)

I local beam search by beam thresholding with parameters
η = 10−4, δ = 40

I If span ≤ δ and p_new < η · p_best4cell, then prune.

I Only applied to binary rules.

chart datastructures

I items are densely enumerated
(cellidx(start, stop, nonterminal))

I saves log-probabilities in vector (indexed by cellidx)

I saves incoming edges for each item (chart.parseforest)

I best derivation (or k-best derivations) retrieved afterwards by
recursively selecting best edge

9/17

PCFG parsing II

beam search (based on Zhang et al. 2010)

I local beam search by beam thresholding with parameters
η = 10−4, δ = 40

I If span ≤ δ and p_new < η · p_best4cell, then prune.

I Only applied to binary rules.

chart datastructures

I items are densely enumerated
(cellidx(start, stop, nonterminal))

I saves log-probabilities in vector (indexed by cellidx)

I saves incoming edges for each item (chart.parseforest)

I best derivation (or k-best derivations) retrieved afterwards by
recursively selecting best edge

9/17

PCFG parsing II

beam search (based on Zhang et al. 2010)

I local beam search by beam thresholding with parameters
η = 10−4, δ = 40

I If span ≤ δ and p_new < η · p_best4cell, then prune.

I Only applied to binary rules.

chart datastructures

I items are densely enumerated
(cellidx(start, stop, nonterminal))

I saves log-probabilities in vector (indexed by cellidx)

I saves incoming edges for each item (chart.parseforest)

I best derivation (or k-best derivations) retrieved afterwards by
recursively selecting best edge

9/17

PCFG parsing II

beam search (based on Zhang et al. 2010)

I local beam search by beam thresholding with parameters
η = 10−4, δ = 40

I If span ≤ δ and p_new < η · p_best4cell, then prune.

I Only applied to binary rules.

chart datastructures

I items are densely enumerated
(cellidx(start, stop, nonterminal))

I saves log-probabilities in vector (indexed by cellidx)

I saves incoming edges for each item (chart.parseforest)

I best derivation (or k-best derivations) retrieved afterwards by
recursively selecting best edge

9/17

PCFG parsing II

beam search (based on Zhang et al. 2010)

I local beam search by beam thresholding with parameters
η = 10−4, δ = 40

I If span ≤ δ and p_new < η · p_best4cell, then prune.

I Only applied to binary rules.

chart datastructures

I items are densely enumerated
(cellidx(start, stop, nonterminal))

I saves log-probabilities in vector (indexed by cellidx)

I saves incoming edges for each item (chart.parseforest)

I best derivation (or k-best derivations) retrieved afterwards by
recursively selecting best edge

9/17

PCFG parsing II

beam search (based on Zhang et al. 2010)

I local beam search by beam thresholding with parameters
η = 10−4, δ = 40

I If span ≤ δ and p_new < η · p_best4cell, then prune.

I Only applied to binary rules.

chart datastructures

I items are densely enumerated
(cellidx(start, stop, nonterminal))

I saves log-probabilities in vector (indexed by cellidx)

I saves incoming edges for each item (chart.parseforest)

I best derivation (or k-best derivations) retrieved afterwards by
recursively selecting best edge

9/17

PCFG parsing II

beam search (based on Zhang et al. 2010)

I local beam search by beam thresholding with parameters
η = 10−4, δ = 40

I If span ≤ δ and p_new < η · p_best4cell, then prune.

I Only applied to binary rules.

chart datastructures

I items are densely enumerated
(cellidx(start, stop, nonterminal))

I saves log-probabilities in vector (indexed by cellidx)

I saves incoming edges for each item (chart.parseforest)

I best derivation (or k-best derivations) retrieved afterwards by
recursively selecting best edge

9/17

PCFG parsing II

beam search (based on Zhang et al. 2010)

I local beam search by beam thresholding with parameters
η = 10−4, δ = 40

I If span ≤ δ and p_new < η · p_best4cell, then prune.

I Only applied to binary rules.

chart datastructures

I items are densely enumerated
(cellidx(start, stop, nonterminal))

I saves log-probabilities in vector (indexed by cellidx)

I saves incoming edges for each item (chart.parseforest)

I best derivation (or k-best derivations) retrieved afterwards by
recursively selecting best edge

10/17

PCFG parsing III

mid filter = auxiliary data structure (size: 4 · |N| · n) with entries

minleft(A, j) = max{ i | [A, i , j] ∈ chart}
maxleft(A, j) = min { i | [A, i , j] ∈ chart}

minright(A, j) = min { j | [A, i , j] ∈ chart}
maxright(A, j) = max{ j | [A, i , j] ∈ chart}

replace “for mid in range(left + 1, right)” by

for mid in range(

max(minright(B, left), maxleft(C, right)),

min(maxright(B, left), minleft(C, right)))

11/17

LCFRS parsing
agenda driven LCFRS parser (with filter)

1 populate_pos(...)

2

3 while not agenda.emtpy():

4 item, prob = agenda.pop()

5 chart.updateprob(item, prob)

6

7 if item == goal and not exhaustive:

8 break

9

10 applyunaryrules(item, grammar, chart, agenda)

11 for rule in lbinary[item.nont]:

12 for item2 in chart.items[rule.rhs2]:

13 process(rule, item, item2, chart, agenda, whitelist)

14 for rule in rbinary[item.nont]:

15 for item2 in chart.items[rule.rhs1]:

16 process(rule, item2, item, chart, agenda, whitelist)

11/17

LCFRS parsing
agenda driven LCFRS parser (with filter)

1 populate_pos(...)

2

3 while not agenda.emtpy():

4 item, prob = agenda.pop()

5 chart.updateprob(item, prob)

6

7 if item == goal and not exhaustive:

8 break

9

10 applyunaryrules(item, grammar, chart, agenda)

11 for rule in lbinary[item.nont]:

12 for item2 in chart.items[rule.rhs2]:

13 process(rule, item, item2, chart, agenda, whitelist)

14 for rule in rbinary[item.nont]:

15 for item2 in chart.items[rule.rhs1]:

16 process(rule, item2, item, chart, agenda, whitelist)

12/17

LCFRS parsing (heuristics)

I SX, SXlrgaps, etc. (Klein and Manning 2003 and Kallmeyer
and Maier 2013)

I score += length * MAX_LOGPROB, i.e., smaller items are
processed before larger items

13/17

LCFRS parse items
Use bitvector representation of spanned sentence positions:

I LCFRS Item (for sentences with length ≤ 64)

cdef cppclass SmallChartItem:

uint32_t label

uint64_t vec

I LCFRS Item (for sentences with length > 64)

cdef cppclass FatChartItem:

uint32_t label

uint64_t vec[SLOTS]

I Combination of items based on algorithm in rparse’s
FastYFComposer

I Items are indexed in the order they are found. Index is stored
in a B-Tree map. Items are ordered by label (primary) and vec
(secondary).

I Probabilities are stored in a vector, indexed by item index.

I Incoming edges are stored in a vector[vector[Edge]],
indexed by item index.

13/17

LCFRS parse items
Use bitvector representation of spanned sentence positions:

I LCFRS Item (for sentences with length ≤ 64)

cdef cppclass SmallChartItem:

uint32_t label

uint64_t vec

I LCFRS Item (for sentences with length > 64)

cdef cppclass FatChartItem:

uint32_t label

uint64_t vec[SLOTS]

I Combination of items based on algorithm in rparse’s
FastYFComposer

I Items are indexed in the order they are found. Index is stored
in a B-Tree map. Items are ordered by label (primary) and vec
(secondary).

I Probabilities are stored in a vector, indexed by item index.

I Incoming edges are stored in a vector[vector[Edge]],
indexed by item index.

13/17

LCFRS parse items
Use bitvector representation of spanned sentence positions:

I LCFRS Item (for sentences with length ≤ 64)

cdef cppclass SmallChartItem:

uint32_t label

uint64_t vec

I LCFRS Item (for sentences with length > 64)

cdef cppclass FatChartItem:

uint32_t label

uint64_t vec[SLOTS]

I Combination of items based on algorithm in rparse’s
FastYFComposer

I Items are indexed in the order they are found. Index is stored
in a B-Tree map. Items are ordered by label (primary) and vec
(secondary).

I Probabilities are stored in a vector, indexed by item index.

I Incoming edges are stored in a vector[vector[Edge]],
indexed by item index.

13/17

LCFRS parse items
Use bitvector representation of spanned sentence positions:

I LCFRS Item (for sentences with length ≤ 64)

cdef cppclass SmallChartItem:

uint32_t label

uint64_t vec

I LCFRS Item (for sentences with length > 64)

cdef cppclass FatChartItem:

uint32_t label

uint64_t vec[SLOTS]

I Combination of items based on algorithm in rparse’s
FastYFComposer

I Items are indexed in the order they are found. Index is stored
in a B-Tree map. Items are ordered by label (primary) and vec
(secondary).

I Probabilities are stored in a vector, indexed by item index.

I Incoming edges are stored in a vector[vector[Edge]],
indexed by item index.

13/17

LCFRS parse items
Use bitvector representation of spanned sentence positions:

I LCFRS Item (for sentences with length ≤ 64)

cdef cppclass SmallChartItem:

uint32_t label

uint64_t vec

I LCFRS Item (for sentences with length > 64)

cdef cppclass FatChartItem:

uint32_t label

uint64_t vec[SLOTS]

I Combination of items based on algorithm in rparse’s
FastYFComposer

I Items are indexed in the order they are found. Index is stored
in a B-Tree map. Items are ordered by label (primary) and vec
(secondary).

I Probabilities are stored in a vector, indexed by item index.

I Incoming edges are stored in a vector[vector[Edge]],
indexed by item index.

13/17

LCFRS parse items
Use bitvector representation of spanned sentence positions:

I LCFRS Item (for sentences with length ≤ 64)

cdef cppclass SmallChartItem:

uint32_t label

uint64_t vec

I LCFRS Item (for sentences with length > 64)

cdef cppclass FatChartItem:

uint32_t label

uint64_t vec[SLOTS]

I Combination of items based on algorithm in rparse’s
FastYFComposer

I Items are indexed in the order they are found. Index is stored
in a B-Tree map. Items are ordered by label (primary) and vec
(secondary).

I Probabilities are stored in a vector, indexed by item index.

I Incoming edges are stored in a vector[vector[Edge]],
indexed by item index.

14/17

LCFRS Agenda

Agenda

I combines heap of (item, prob) and map: item → best
probability

I while popping: check that best (item, prob) in heap satisfies
map(item) = prob, otherwise pop next

I on adding (item, prob): check that item /∈ map or
map(item) < prob, otherwise discard

14/17

LCFRS Agenda

Agenda

I combines heap of (item, prob) and map: item → best
probability

I while popping: check that best (item, prob) in heap satisfies
map(item) = prob, otherwise pop next

I on adding (item, prob): check that item /∈ map or
map(item) < prob, otherwise discard

14/17

LCFRS Agenda

Agenda

I combines heap of (item, prob) and map: item → best
probability

I while popping: check that best (item, prob) in heap satisfies
map(item) = prob, otherwise pop next

I on adding (item, prob): check that item /∈ map or
map(item) < prob, otherwise discard

15/17

References I

Krasimir Angelov and Peter Ljunglöf. “Fast Statistical
Parsing with Parallel Multiple Context-Free
Grammars”. In: Proceedings of the 14th Conference of
the European Chapter of the Association for
Computational Linguistics. Gothenburg, Sweden:
Association for Computational Linguistics, Apr. 2014,
pp. 368–376. url:
https://www.aclweb.org/anthology/E14-1039.

Nathan Bodenstab. Efficient Implementation of the
CKY algorithm. Tech. rep. 2009. url:
http://csee.ogi.edu/~bodensta/bodenstab_

efficient_cyk.pdf.

https://www.aclweb.org/anthology/E14-1039
http://csee.ogi.edu/~bodensta/bodenstab_efficient_cyk.pdf
http://csee.ogi.edu/~bodensta/bodenstab_efficient_cyk.pdf

16/17

References II

Andreas van Cranenburgh, Remko Scha, and
Rens Bod. “Data-Oriented Parsing with discontinuous
constituents and function tags”. In: Journal of
Language Modelling 4.1 (2016), pp. 57–111. doi:
10.15398/jlm.v4i1.100.

Joshua Goodman. “Efficient parsing of DOP with
PCFG-reductions”. In: Data-Oriented Parsing. Ed. by
Rens Bod, Khalil Sima’an, and Remko Scha. Stanford,
CA, USA: CSLI Publications, 2003. Chap. 4. isbn:
1575864355. url:
https://pdfs.semanticscholar.org/2943/

16b9b0156eee9cd06c778e06966b77c20e83.pdf.

https://doi.org/10.15398/jlm.v4i1.100
https://pdfs.semanticscholar.org/2943/16b9b0156eee9cd06c778e06966b77c20e83.pdf
https://pdfs.semanticscholar.org/2943/16b9b0156eee9cd06c778e06966b77c20e83.pdf

17/17

References III

Dan Klein and Christopher D Manning. “A parsing:
fast exact Viterbi parse selection”. In: Proceedings of
the 2003 Conference of the North American Chapter of
the Association for Computational Linguistics on
Human Language Technology-Volume 1. Association
for Computational Linguistics. 2003, pp. 40–47.

Laura Kallmeyer and Wolfgang Maier. “Data-driven
Parsing using Probabilistic Linear Context-Free
Rewriting Systems”. In: Computational Linguistics 39.1
(2013), pp. 87–119. doi: 10.1162/COLI_a_00136.

Yue Zhang et al. “Chart Pruning for Fast
Lexicalised-Grammar Parsing”. In: Coling 2010:
Posters. Beijing, China: Coling 2010 Organizing
Committee, Aug. 2010, pp. 1471–1479. url:
http://www.aclweb.org/anthology/C10-2168.

https://doi.org/10.1162/COLI_a_00136
http://www.aclweb.org/anthology/C10-2168

	References

