Prerequisites: The C-S-Theorem (unweighted, CF)

Language L, t.f.a.e.
- L is CF
- A string homomorphism h, regular language R, Dyck language D s.t.
 \[L = h(R \cap D) \]

 \[w \in L \iff \exists u \in R \cap D: h(u) = w \]

 \[\iff \exists u \in R \cap D: u \in h^{-1}(w) \]

 \[\iff \exists u \in R \cap h^{-1}(w) \cap D \]

Cf. Chomsky & Schützenberger, 1963
Prerequisites: C-S parsing (unweighted, CF)

\[w \in L \iff \exists v \in h^{-1}(w) : u \vdash D \]

- Construct FSAs for \(R, h^{-1}(w) \)
- Product construction of FSAs
- Extract Dyck words
- Read off derivation trees of some CFG
Prerequisites:
- Construct fsas for $R, \mu^{-1}(\omega)$

Grammar:
- $\alpha S \rightarrow S S$
- $\beta S \rightarrow A$
- $\gamma A \rightarrow a$

Diagram:
Prerequisites:

- Construct FSAs for R, $R_i^{-1}(w)$

Grammar

$\alpha S \rightarrow SS$
$\beta S \rightarrow A$
$\gamma A \rightarrow a$

Word

$w = \alpha \alpha_1 \alpha_2$

$\Delta = \{ (w_i, (\alpha_1, \alpha_2)) | \alpha \in \mathcal{P}, \alpha \in \mathcal{T}(\alpha_1) \} \\ \cup \{ \sigma | \sigma \in \Sigma \}$
Prerequisites:

- Extract Dyck words from product automaton

\[\Rightarrow \text{put } p \xrightarrow{a} q \in T \text{ in agenda} \]

\[\Rightarrow \text{for } p \xrightarrow{v} q \text{ in agenda} \]

- put \(p \xrightarrow{v} q \) into results

- for each \(p' \xleftarrow{v} p, q \xrightarrow{v} q' \in T \)

 put \(p' \xrightarrow{v} q' \) in agenda

- for each \(p' \xleftarrow{w} p \) in results

 put \(p' \xleftarrow{w} q \) in agenda

- for each \(q \xrightarrow{w} q' \) in results

 put \(p \xrightarrow{w} q' \) in agenda

- if \(p = q_0, q = q_6 \); return \(v \)
Prerequisites: Chart parsing

- build up chart (using deduction system)
as relation \((N \times N \times N) \times (P \times (N \times N)^*)\)

<table>
<thead>
<tr>
<th>NT + Range</th>
<th>Backtrace</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S, 0, 2)</td>
<td>S \rightarrow SS, (0, 1), (1, 2)</td>
</tr>
<tr>
<td>(S, 0, 1)</td>
<td>S \rightarrow A, (0, 1)</td>
</tr>
<tr>
<td>(A, 0, 1)</td>
<td>A \rightarrow a</td>
</tr>
<tr>
<td>(S, 1, 2)</td>
<td>S \rightarrow A, (1, 2)</td>
</tr>
<tr>
<td>(A, 1, 2)</td>
<td>A \rightarrow a</td>
</tr>
</tbody>
</table>

C.E. Huang & Chiang, 2005
So, how is Chomsky–Schützenberger parsing the same as Chart parsing?
unweighted Chomsky-Schützenberger parsing for CFG is unweighted chart parsing for CFG
A closer look at the product FSA

- \(R \) w/l states \(\{ \overline{A}, A | A \in \mathbb{N} \} \) (and some uniques)
- \(h^{-1}(w) \) w/l states \([0, |w|] \)

\(\rightarrow \) Consider runs from \((A, i)\) to \((\overline{A}, j)\) as NT A spanning range \(\langle i, j \rangle \)

\((i f \text{ brackets are Dyck})\)
A closer look at the product fsa
A closer look at the extraction of Dyck words

- Efficient extraction w/ dynamic programming
 → store information about how to produce intermediate results
 - initial \(\rho \xrightarrow{\alpha} \eta \)
 - by concatenation
 \((\rho \xrightarrow{u} \rho', \rho' \xrightarrow{v} \eta) \Rightarrow \rho^{uv} \xrightarrow{} \eta \)
 - by enbracketing
 \((\rho \xrightarrow{} \rho', \rho' \xrightarrow{u} \eta', \eta' \xrightarrow{} \eta) = \Rightarrow (\rho^{(u)} \xrightarrow{} \eta) \)
A closer look at the extraction of Dyck words

- build up chart

<table>
<thead>
<tr>
<th>State x State</th>
<th>Backtrace</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p, q)</td>
<td>init(\tilde{a})</td>
</tr>
<tr>
<td></td>
<td>concat(p, p', q)</td>
</tr>
<tr>
<td></td>
<td>enbracket("","p', q', ",")</td>
</tr>
</tbody>
</table>

- evaluate chart starting with (q_0, q_f)
State x State

<table>
<thead>
<tr>
<th>State x State</th>
<th>Backtrace</th>
</tr>
</thead>
<tbody>
<tr>
<td>((s_0, \bar{s}_2))</td>
<td>enbracket((\alpha), ((s_0, \bar{s}_2)), (\beta))</td>
</tr>
<tr>
<td>((s_0, 0, 1))</td>
<td>enbracket((\gamma), ((u_1, 0)), ((u_2, 1)), (\gamma))</td>
</tr>
<tr>
<td>((u_0, 1)), ((s_2))</td>
<td>init((\bar{\alpha}))</td>
</tr>
<tr>
<td>((u_0, 1)), ((0, 1))</td>
<td>enbracket((\beta), ((u_0, 1)), ((0, 1)), (\beta))</td>
</tr>
</tbody>
</table>

Backtrace

- \(\alpha\)
- \((s_0, 0, 1)\)
- \((u_1, 0)\)
- \((u_2, 1)\)
- \((s_1, 0, 1)\)
- \((\bar{\alpha} \)
Putting both together

<table>
<thead>
<tr>
<th>$N \times \text{Range}$</th>
<th>$(\Delta \cup (N \times \text{Range}))^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S, \langle 0, 1 \rangle$</td>
<td>$(\gamma \tilde{a})^*_y$</td>
</tr>
<tr>
<td>$S, \langle 0, 1 \rangle$</td>
<td>$(^1 \Delta \langle 0, 1 \rangle)^*_y$</td>
</tr>
<tr>
<td>$A, \langle 0, 1 \rangle$</td>
<td>$(^\gamma \tilde{a})^*_y$</td>
</tr>
<tr>
<td>$S, \langle 1, 2 \rangle$</td>
<td>$(^1 \Delta \langle 1, 2 \rangle)^*_y$</td>
</tr>
<tr>
<td>$A, \langle 1, 2 \rangle$</td>
<td>$(^\gamma \tilde{a})^*_y$</td>
</tr>
</tbody>
</table>
Putting both together

<table>
<thead>
<tr>
<th>$N \times N \times N$</th>
<th>$P \times (N \times N)^k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S, 0, 2$</td>
<td>$\kappa_i(S, 0, 1), (S, 1, 2)$</td>
</tr>
<tr>
<td>$S, 0, 1$</td>
<td>$\beta_i(A, 0, 1)$</td>
</tr>
<tr>
<td>$A, 0, 1$</td>
<td>γ</td>
</tr>
<tr>
<td>$S, 1, 2$</td>
<td>$\beta_i(A, 1, 2)$</td>
</tr>
<tr>
<td>$A, 1, 2$</td>
<td>γ</td>
</tr>
</tbody>
</table>
But wait, there's more!

<table>
<thead>
<tr>
<th></th>
<th>CFG_i</th>
<th>LCFRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>un-W</td>
<td>✓</td>
<td>CFGq</td>
</tr>
<tr>
<td></td>
<td></td>
<td>approx</td>
</tr>
<tr>
<td>W</td>
<td>✓</td>
<td>wCFGq</td>
</tr>
<tr>
<td></td>
<td></td>
<td>approx</td>
</tr>
</tbody>
</table>
Chomsky-Schützenberger parsing for CFG is Chart parsing for CFG.