
Parsing of natural language sentences to
syntactic and semantic graph representations
Abschlussvortrag zum Forschungsprojekt

Pius Meinert
April 13, 2018



Overview

Graph Representations

Corpora

Parsing Techniques

Parser

1



Overview

Graph Representations

Corpora

Parsing Techniques

Parser

Semantic: AMR, UCCA, depen-
dency graphs
Syntactic: Constituency tree
derived, Use of syntactic infor-
mation

1



Overview

Graph Representations

Corpora

Parsing Techniques

Parser

AMR, UCCA, SemEval-2014/-2015:
dependency graphs, Penn Tree-
bank, TIGER Corpus

1



Overview

Graph Representations

Corpora

Parsing Techniques

Parser

Maximum Subgraph
Transition-Based
Synchronous HRG

1



Overview

Graph Representations

Corpora

Parsing Techniques

Parser

1



Abstract Meaning Representation (AMR) [Ban+13]

2



Abstract Meaning Representation (AMR) [Ban+13]

contrast

possible

say

You
I

person

dream

include

only —

arg0-of

arg1

arg2 arg3

2



Abstract Meaning Representation (AMR) [Ban+13]

rooted, directed,
edge-labeled and
leaf-labeled

contrast

possible

say

You
I

person

dream

include

only —

arg0-of

arg1

arg2 arg3

2



Tree Definition

A tree is a directed graph G = (V,A) that has a vertex r, named
root, such that every vertex v ∈ V is reachable from r via a
unique directed path. [KJ15; KO16]

3



Dependency Graph [KJ15]

The gene thus can prevent a plant from fertilizing itself
bv arg1 arg1 bv arg2

arg2
arg1

arg1

arg3

4



Dependency Graph [KJ15]

unconnected

The gene thus can prevent a plant from fertilizing itself
bv arg1 arg1 bv arg2

arg2
arg1

arg1

arg3

Connectedness:
There exists an undirected path between every two pairs of
vertices. Nodes with in- and out-degree zero are called
singletons. [KO16]

4



Dependency Graph [KJ15]

unconnected, multi-rooted

The gene thus can prevent a plant from fertilizing itself
bv arg1 arg1 bv arg2

arg2
arg1

arg1

arg3

Top nodes:
Nodes of in-degree zero, a graph’s equivalent to the unique
root in a tree. [KO16]

4



Dependency Graph [KJ15]

unconnected, multi-rooted, reentrancy

The gene thus can prevent a plant from fertilizing itself
bv arg1 arg1 bv arg2

arg2
arg1

arg1

arg3

Reentrant nodes:
Nodes with in-degree greater than one. [WXP15; DCS17; BB17]

4



Dependency Graph - Noncrossing [KJ15]

The gene thus can prevent a plant from fertilizing itself
bv arg1 arg1 bv arg2

arg2
arg1

arg1

arg3

5



Dependency Graph - Noncrossing [KJ15]

Coverage ranges from 48% to 78% for various graph banks
(CCGbank, Prage Semantic Dependencies, etc.). [KJ15; SCW17]

The gene thus can prevent a plant from fertilizing itself
bv arg1 arg1 bv arg2

arg2
arg1

arg1

arg3

5



Dependency Graph - 1-Endpoint-Crossing [PKM13]

das mer em Hans es huus hälfed aastriche

6



Dependency Graph - 1-Endpoint-Crossing [PKM13]

das mer em Hans es huus hälfed aastriche

6



Dependency Graph - 1-Endpoint-Crossing [PKM13]

Account for 95.7− 97.7% of the dependency structures that are
used in [Cao+17].

das mer em Hans es huus hälfed aastriche

6



Dependency Graph - Book Embedding [SCW17]

The company that Mark wants to buy

arg1 arg1
arg2

arg1

arg1
arg1

arg2
arg2

arg2

7



Dependency Graph - Book Embedding [SCW17]

The company that Mark wants to buy

arg1 arg1
arg2

arg1

arg1
arg1

arg2
arg2

arg2

7



Dependency Graph - Book Embedding [SCW17]

The company that Mark wants to buy

arg1 arg1

arg2

arg1

arg1
arg1

arg2
arg2

arg2

7



Dependency Graph - Book Embedding [SCW17]

Coverage with respect to different page numbers:
PN coverage
1 48− 78%
2 20− 49%
3 0.3− 1.7%

The company that Mark wants to buy

arg1 arg1

arg2

arg1

arg1
arg1

arg2
arg2

arg2

7



Evaluation Metric - AMR Representations

AMR graph

go–1

boy

want-01

ARG0 ARG1

ARG0 instance

instance

instance

8



Evaluation Metric - AMR Representations

AMR graph

go–1

boy

want-01

ARG0 ARG1

ARG0 instance

instance

instance

PENMAN notation

(w / want-01
:arg0 (b / boy)
:arg1 (g / go-01)

:arg0 b)

8



Evaluation Metric - AMR Representations

AMR graph

go–1

boy

want-01

ARG0 ARG1

ARG0 instance

instance

instance

logic format

instance(a, want-01) ∧
instance(b, boy) ∧
instance(c, go-01) ∧
ARG0(a, b) ∧
ARG1(a, c) ∧
ARG0(c, b)

8



Evaluation Metric - Smatch [CK13]

The boy wants the football

instance(x, want-01) ∧
instance(y, boy) ∧
instance(z, football) ∧
ARG0(x, y) ∧
ARG1(x, z)

The boy wants to go

instance(a, want-01) ∧
instance(b, boy) ∧
instance(c, go-01) ∧
ARG0(a, b) ∧
ARG1(a, c) ∧
ARG0(c, b)

9



Evaluation Metric - Smatch [CK13]

The boy wants the football

instance(x, want-01) ∧
instance(y, boy) ∧
instance(z, football) ∧
ARG0(x, y) ∧
ARG1(x, z)

The boy wants to go

instance(a, want-01) ∧
instance(b, boy) ∧
instance(c, go-01) ∧
ARG0(a, b) ∧
ARG1(a, c) ∧
ARG0(c, b)

inter-annotator agreement study:
Smatch score ranges from 0.79 to 0.83.

9



Graph Parsing Techniques

Maximum Subgraph
“all pairs” approach [BM06] - Consider all possible (weighted)
arcs and find the maximum spanning connected subgraph.

Transition-based
“stepwise” approach [BM06] - Build the graph step by step by
applying transitions to the current configuration.

Synchronous Hyperedge Replacement Grammar (SHRG)
HRGs as “an intuitive generalization of context free grammars
(CFGs) from strings to hypergraphs.” [Jon+12; Hab92]

10



Maximum Subgraph - Problem Definition[SCW17]

Input directed, weighted graph G = (V,A) (complete)

Implicit sentence s, class of graphs G

Output subgraph G′ = (V,A′ ⊆ A) with maximum total
weight such that G′ belongs to G

G′(s) = argmaxH∈G(s,G)
∑

p∈H ScorePart(s,p)

Example if class of graphs G is the class of all trees,
Maximum Subgraph = Maximum Spanning Tree

11



Maximum Subgraph - Learning and Features [MN07]

G′(s) = argmaxH∈G(s,G)
∑

p∈H ScorePart(s,p)

12



Maximum Subgraph - Learning and Features [MN07]

Global
learning

Optimize entire graph score, not only single arc
attachments.

G′(s) = argmaxH∈G(s,G)
∑

p∈H ScorePart(s,p)

12



Maximum Subgraph - Learning and Features [MN07]

Global
learning

Optimize entire graph score, not only single arc
attachments.

G′(s) = argmaxH∈G(s,G)
∑

p∈H ScorePart(s,p)

Local
features

Restricted to a limited number of arcs (to keep
inference and learning tractable).

12



JAMR [Fla+14]

First published AMR parser. It solves the task by means of two
phases:

Concept identification: Match spans of words to concept graph
fragments.

Relation identification: Find the maximum spanning connected
subgraph over those graph fragments.

13



JAMR - Concept Identification Phase [Fla+14]

The boy wants to visit New York City

∅ boy want-01 ∅ visit-01 name

city
“New”

“York”

“City”

name
op1

op2

op3

14



JAMR - Concept Identification Phase [Fla+14]

The boy wants to visit New York City

c:

w:
b:
k = 6

b0 b1 b2 b3 b4 b5 b6

∅ boy want-01 ∅ visit-01 name

city
“New”

“York”

“City”

name
op1

op2

op3

score(b, c; θ) =
∑k

i=1 θ
>f(wbi−1:bi ,bi−1,bi, ci)

Solve by dynamic programming: O(n2).

14



JAMR - Relation Identification Phase [Fla+14]

1. Initialization:
Include all edges and vertices given by the concept
identification phase.

2. Pre-processing:
Reduce the set of edges considered to one edge per pair of
nodes: Either the edge given by the first phase or the highest
scoring one.

3. Core algorithm:
First, add all positive edges and then greedily add the least
negative edge that connects two components until the graph is
connected.

15



Transition-Based - Transition System [WXP15]

A transition system for parsing is a tuple S = (S, T, s0, St) where

• S is a set of parsing states (configurations).
• T is a set of parsing actions (transitions), each of which is
a function t : S→ S.

• s0 is an initialization function, mapping each input
sentence w to an initial state.

• St ⊆ S is a set of terminal states.

16



Transition-Based - Parsing Algorithm [WXP15]

Input: sentence w = w0...wn
Output: parsed graph G
1: s← s0(w)
2: while s /∈ St do
3: T ← all possible actions according to s
4: bestT ← argmaxt∈T score(t, s)
5: s← apply bestT to s
6: end while
7: return G

17



Transition-Based - Learning and Features [MN07]

bestT ← argmaxt∈T score(t, s)

18



Transition-Based - Learning and Features [MN07]

Local
learning

Optimization only for single transitions, not
transition sequences.

bestT ← argmaxt∈T score(t, s)

18



Transition-Based - Learning and Features [MN07]

Local
learning

Optimization only for single transitions, not
transition sequences.

bestT ← argmaxt∈T score(t, s)

Global
features

Features may be based on whole graph built so
far/entire transition history.

18



Transition-Based AMR Parser [WXP15]

Idea: Use similarities between an AMR and the dependency
structure of a sentence.

Two-stage framework:

1) dependency parser to generate dependency tree for the
sentence

2) transition-based algorithm to transform dependency tree
to an AMR graph

The dependency parser can be trained on a much larger data
set.

19



Transition-Based AMR Parser - Transition Actions [WXP15]

REENTRANCE action

want

police arrest

reentrance

⇒
want

police arrest
ARG0

REPLACE-HEAD action

live

in

Singapore

⇒
live

Singapore

20



Towards a Catalogue of Linguistic Graph Banks [KO16]

• graph structures are of growing relevance to much NLP
research

• provide common terminology and transparent statistics
for different (collections of) graphs

• propose to establish shared community resource:
https://aclweb.org/aclwiki/Graph_Parsing_
(State_of_the_Art)

21

https://aclweb.org/aclwiki/Graph_Parsing_(State_of_the_Art)
https://aclweb.org/aclwiki/Graph_Parsing_(State_of_the_Art)


References i

Laura Banarescu, Claire Bonial, Shu Cai,
Madalina Georgescu, Kira Griffitt, Ulf Hermjakob,
Kevin Knight, Philipp Koehn, Martha Palmer, and
Nathan Schneider. “Abstract Meaning Representation
for Sembanking”. In: Proceedings of the 7th
Linguistic Annotation Workshop and Interoperability
with Discourse, LAW-ID@ACL 2013, August 8-9, 2013,
Sofia, Bulgaria. 2013, pp. 178–186. url:
http://aclweb.org/anthology/W/W13/W13-
2322.pdf.

http://aclweb.org/anthology/W/W13/W13-2322.pdf
http://aclweb.org/anthology/W/W13/W13-2322.pdf


References ii

Jan Buys and Phil Blunsom. “Robust Incremental
Neural Semantic Graph Parsing”. In: Proceedings of
the 55th Annual Meeting of the Association for
Computational Linguistics, ACL 2017, Vancouver,
Canada, July 30 - August 4, Volume 1: Long Papers.
2017, pp. 1215–1226. doi: 10.18653/v1/P17-1112.
url:
https://doi.org/10.18653/v1/P17-1112.

https://doi.org/10.18653/v1/P17-1112
https://doi.org/10.18653/v1/P17-1112


References iii

Sabine Buchholz and Erwin Marsi. “CoNLL-X Shared
Task on Multilingual Dependency Parsing”. In:
Proceedings of the Tenth Conference on
Computational Natural Language Learning, CoNLL
2006, New York City, USA, June 8-9, 2006. 2006,
pp. 149–164. url:
http://aclweb.org/anthology/W/W06/W06-
2920.pdf.

http://aclweb.org/anthology/W/W06/W06-2920.pdf
http://aclweb.org/anthology/W/W06/W06-2920.pdf


References iv

Junjie Cao, Sheng Huang, Weiwei Sun, and
Xiaojun Wan. “Parsing to 1-Endpoint-Crossing,
Pagenumber-2 Graphs”. In: Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 -
August 4, Volume 1: Long Papers. 2017, pp. 2110–2120.
doi: 10.18653/v1/P17-1193. url:
https://doi.org/10.18653/v1/P17-1193.

https://doi.org/10.18653/v1/P17-1193
https://doi.org/10.18653/v1/P17-1193


References v

Shu Cai and Kevin Knight. “Smatch: an Evaluation
Metric for Semantic Feature Structures”. In:
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics, ACL 2013,
4-9 August 2013, Sofia, Bulgaria, Volume 2: Short
Papers. 2013, pp. 748–752. url:
http://aclweb.org/anthology/P/P13/P13-
2131.pdf.

http://aclweb.org/anthology/P/P13/P13-2131.pdf
http://aclweb.org/anthology/P/P13/P13-2131.pdf


References vi

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
“An Incremental Parser for Abstract Meaning
Representation”. In: Proceedings of the 15th
Conference of the European Chapter of the
Association for Computational Linguistics, EACL 2017,
Valencia, Spain, April 3-7, 2017, Volume 1: Long
Papers. 2017, pp. 536–546. url:
https://aclanthology.info/papers/E17-
1051/e17-1051.

https://aclanthology.info/papers/E17-1051/e17-1051
https://aclanthology.info/papers/E17-1051/e17-1051


References vii

Jeffrey Flanigan, Sam Thomson, Jaime G. Carbonell,
Chris Dyer, and Noah A. Smith. “A Discriminative
Graph-Based Parser for the Abstract Meaning
Representation”. In: Proceedings of the 52nd Annual
Meeting of the Association for Computational
Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD,
USA, Volume 1: Long Papers. 2014, pp. 1426–1436. url:
http://aclweb.org/anthology/P/P14/P14-
1134.pdf.

Annegret Habel. Hyperedge Replacement: Grammars
and Languages. Vol. 643. Lecture Notes in Computer
Science. Springer, 1992.

http://aclweb.org/anthology/P/P14/P14-1134.pdf
http://aclweb.org/anthology/P/P14/P14-1134.pdf


References viii

Bevan Jones, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, and Kevin Knight.
“Semantics-Based Machine Translation with
Hyperedge Replacement Grammars”. In: COLING 2012,
24th International Conference on Computational
Linguistics, Proceedings of the Conference: Technical
Papers, 8-15 December 2012, Mumbai, India. 2012,
pp. 1359–1376. url:
http://aclweb.org/anthology/C/C12/C12-
1083.pdf.

http://aclweb.org/anthology/C/C12/C12-1083.pdf
http://aclweb.org/anthology/C/C12/C12-1083.pdf


References ix

Marco Kuhlmann and Peter Jonsson. “Parsing to
Noncrossing Dependency Graphs”. In: TACL 3 (2015),
pp. 559–570. url:
https://tacl2013.cs.columbia.edu/ojs/
index.php/tacl/article/view/709.

Marco Kuhlmann and Stephan Oepen. “Towards a
Catalogue of Linguistic Graph Banks”. In:
Computational Linguistics 42.4 (2016), pp. 819–827.
doi: 10.1162/COLI_a_00268. url:
https://doi.org/10.1162/COLI_a_00268.

https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/709
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/709
https://doi.org/10.1162/COLI_a_00268
https://doi.org/10.1162/COLI_a_00268


References x

Ryan T. McDonald and Joakim Nivre. “Characterizing
the Errors of Data-Driven Dependency Parsing
Models”. In: EMNLP-CoNLL 2007, Proceedings of the
2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational
Natural Language Learning, June 28-30, 2007, Prague,
Czech Republic. 2007, pp. 122–131. url: http:
//www.aclweb.org/anthology/D07-1013.

Emily Pitler, Sampath Kannan, and Mitchell Marcus.
“Finding Optimal 1-Endpoint-Crossing Trees”. In: TACL
1 (2013), pp. 13–24. url:
https://tacl2013.cs.columbia.edu/ojs/
index.php/tacl/article/view/23.

http://www.aclweb.org/anthology/D07-1013
http://www.aclweb.org/anthology/D07-1013
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/23
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/23


References xi

Weiwei Sun, Junjie Cao, and Xiaojun Wan. “Semantic
Dependency Parsing via Book Embedding”. In:
Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 1:
Long Papers. 2017, pp. 828–838. doi:
10.18653/v1/P17-1077. url:
https://doi.org/10.18653/v1/P17-1077.

https://doi.org/10.18653/v1/P17-1077
https://doi.org/10.18653/v1/P17-1077


References xii

Chuan Wang, Nianwen Xue, and Sameer Pradhan. “A
Transition-based Algorithm for AMR Parsing”. In:
NAACL HLT 2015, The 2015 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Denver, Colorado, USA, May 31 - June 5,
2015. 2015, pp. 366–375. url:
http://aclweb.org/anthology/N/N15/N15-
1040.pdf.

http://aclweb.org/anthology/N/N15/N15-1040.pdf
http://aclweb.org/anthology/N/N15/N15-1040.pdf

	Appendix
	References


