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Abstract Meaning Representation (AMR) [Ban+13]
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Abstract Meaning Representation (AMR) [Ban+13]
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Tree Definition

A tree is a directed graph G = (V,A) that has a vertex r, named
root, such that every vertex v ∈ V is reachable from r via a
unique directed path. [KJ15; KO16]
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Dependency Graph [KJ15]
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Dependency Graph [KJ15]

unconnected

The gene thus can prevent a plant from fertilizing itself
bv arg1 arg1 bv arg2

arg2
arg1

arg1

arg3

Connectedness:
There exists an undirected path between every two pairs of
vertices. Nodes with in- and out-degree zero are called
singletons. [KO16]
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Dependency Graph [KJ15]

unconnected, multi-rooted

The gene thus can prevent a plant from fertilizing itself
bv arg1 arg1 bv arg2
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Top nodes:
Nodes of in-degree zero, a graph’s equivalent to the unique
root in a tree. [KO16]
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Dependency Graph [KJ15]

unconnected, multi-rooted, reentrancy

The gene thus can prevent a plant from fertilizing itself
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Reentrant nodes:
Nodes with in-degree greater than one. [WXP15; DCS17; BB17]
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Dependency Graph - Noncrossing [KJ15]
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Dependency Graph - Noncrossing [KJ15]

Coverage ranges from 48% to 78% for various graph banks
(CCGbank, Prage Semantic Dependencies, etc.). [KJ15; SCW17]
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Dependency Graph - 1-Endpoint-Crossing [PKM13]

das mer em Hans es huus hälfed aastriche
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Dependency Graph - 1-Endpoint-Crossing [PKM13]

Account for 95.7− 97.7% of the dependency structures that are
used in [Cao+17].

das mer em Hans es huus hälfed aastriche
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Dependency Graph - Book Embedding [SCW17]

The company that Mark wants to buy
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Dependency Graph - Book Embedding [SCW17]

Coverage with respect to different page numbers:
PN coverage
1 48− 78%
2 20− 49%
3 0.3− 1.7%
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Evaluation Metric - AMR Representations
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Evaluation Metric - AMR Representations
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Evaluation Metric - AMR Representations

AMR graph

go–1

boy

want-01
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ARG0 instance

instance

instance

logic format

instance(a, want-01) ∧
instance(b, boy) ∧
instance(c, go-01) ∧
ARG0(a, b) ∧
ARG1(a, c) ∧
ARG0(c, b)
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Evaluation Metric - Smatch [CK13]

The boy wants the football

instance(x, want-01) ∧
instance(y, boy) ∧
instance(z, football) ∧
ARG0(x, y) ∧
ARG1(x, z)

The boy wants to go

instance(a, want-01) ∧
instance(b, boy) ∧
instance(c, go-01) ∧
ARG0(a, b) ∧
ARG1(a, c) ∧
ARG0(c, b)
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Evaluation Metric - Smatch [CK13]

The boy wants the football

instance(x, want-01) ∧
instance(y, boy) ∧
instance(z, football) ∧
ARG0(x, y) ∧
ARG1(x, z)

The boy wants to go

instance(a, want-01) ∧
instance(b, boy) ∧
instance(c, go-01) ∧
ARG0(a, b) ∧
ARG1(a, c) ∧
ARG0(c, b)

inter-annotator agreement study:
Smatch score ranges from 0.79 to 0.83.
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Graph Parsing Techniques

Maximum Subgraph
“all pairs” approach [BM06] - Consider all possible (weighted)
arcs and find the maximum spanning connected subgraph.

Transition-based
“stepwise” approach [BM06] - Build the graph step by step by
applying transitions to the current configuration.

Synchronous Hyperedge Replacement Grammar (SHRG)
HRGs as “an intuitive generalization of context free grammars
(CFGs) from strings to hypergraphs.” [Jon+12; Hab92]
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Maximum Subgraph - Problem Definition[SCW17]

Input directed, weighted graph G = (V,A) (complete)

Implicit sentence s, class of graphs G

Output subgraph G′ = (V,A′ ⊆ A) with maximum total
weight such that G′ belongs to G

G′(s) = argmaxH∈G(s,G)
∑

p∈H ScorePart(s,p)

Example if class of graphs G is the class of all trees,
Maximum Subgraph = Maximum Spanning Tree
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Maximum Subgraph - Learning and Features [MN07]

G′(s) = argmaxH∈G(s,G)
∑

p∈H ScorePart(s,p)
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Maximum Subgraph - Learning and Features [MN07]

Global
learning

Optimize entire graph score, not only single arc
attachments.

G′(s) = argmaxH∈G(s,G)
∑

p∈H ScorePart(s,p)
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Maximum Subgraph - Learning and Features [MN07]

Global
learning

Optimize entire graph score, not only single arc
attachments.

G′(s) = argmaxH∈G(s,G)
∑

p∈H ScorePart(s,p)

Local
features

Restricted to a limited number of arcs (to keep
inference and learning tractable).
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JAMR [Fla+14]

First published AMR parser. It solves the task by means of two
phases:

Concept identification: Match spans of words to concept graph
fragments.

Relation identification: Find the maximum spanning connected
subgraph over those graph fragments.
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JAMR - Concept Identification Phase [Fla+14]

The boy wants to visit New York City
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JAMR - Concept Identification Phase [Fla+14]

The boy wants to visit New York City

c:

w:
b:
k = 6

b0 b1 b2 b3 b4 b5 b6

∅ boy want-01 ∅ visit-01 name

city
“New”

“York”

“City”

name
op1

op2

op3

score(b, c; θ) =
∑k

i=1 θ
>f(wbi−1:bi ,bi−1,bi, ci)

Solve by dynamic programming: O(n2).
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JAMR - Relation Identification Phase [Fla+14]

1. Initialization:
Include all edges and vertices given by the concept
identification phase.

2. Pre-processing:
Reduce the set of edges considered to one edge per pair of
nodes: Either the edge given by the first phase or the highest
scoring one.

3. Core algorithm:
First, add all positive edges and then greedily add the least
negative edge that connects two components until the graph is
connected.
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Transition-Based - Transition System [WXP15]

A transition system for parsing is a tuple S = (S, T, s0, St) where

• S is a set of parsing states (configurations).
• T is a set of parsing actions (transitions), each of which is
a function t : S→ S.

• s0 is an initialization function, mapping each input
sentence w to an initial state.

• St ⊆ S is a set of terminal states.
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Transition-Based - Parsing Algorithm [WXP15]

Input: sentence w = w0...wn
Output: parsed graph G
1: s← s0(w)
2: while s /∈ St do
3: T ← all possible actions according to s
4: bestT ← argmaxt∈T score(t, s)
5: s← apply bestT to s
6: end while
7: return G
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Transition-Based - Learning and Features [MN07]

bestT ← argmaxt∈T score(t, s)
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Transition-Based - Learning and Features [MN07]

Local
learning

Optimization only for single transitions, not
transition sequences.

bestT ← argmaxt∈T score(t, s)
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Transition-Based - Learning and Features [MN07]

Local
learning

Optimization only for single transitions, not
transition sequences.

bestT ← argmaxt∈T score(t, s)

Global
features

Features may be based on whole graph built so
far/entire transition history.
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Transition-Based AMR Parser [WXP15]

Idea: Use similarities between an AMR and the dependency
structure of a sentence.

Two-stage framework:

1) dependency parser to generate dependency tree for the
sentence

2) transition-based algorithm to transform dependency tree
to an AMR graph

The dependency parser can be trained on a much larger data
set.
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Transition-Based AMR Parser - Transition Actions [WXP15]
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Towards a Catalogue of Linguistic Graph Banks [KO16]

• graph structures are of growing relevance to much NLP
research

• provide common terminology and transparent statistics
for different (collections of) graphs

• propose to establish shared community resource:
https://aclweb.org/aclwiki/Graph_Parsing_
(State_of_the_Art)
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