M-monoid parsing and reduct generation

Richard Mörbitz
13th March 2018

Introduction

## Ambiguity in natural language

Local cooks close restaurant.

## Ambiguity in natural language

Local cooks close restaurant.

restaurant

## Definitions

## M-monoid

## Definition (Multioperator monoid)

An M-monoid is an algebraic structure $(S, \oplus, 0, \Omega)$, such that

- $(S, \oplus, 0)$ is a commutative monoid,
- $\Omega$ is a set of operations on $S$ such that $\forall \omega \in \Omega: \omega(\ldots, 0, \ldots)=0$
- $0^{k} \in \Omega$ for all $k \in \mathbb{N}, 0^{k}: S^{k} \rightarrow S$ such that $0^{k}\left(s_{1}, \ldots, s_{k}\right)=0$, and
- $\Omega$ distributes over $\oplus$

S is complete if the infinitary sum $\Sigma \oplus$ exists.

## Viterbi M-monoid

$\left(\mathbb{V}, \Sigma^{\max }\right)$, where

- $\mathbb{V}=\left(\mathbb{R}_{0}^{1}, \max , 0, \Omega.\right)$
- $\sum^{\max }{ }_{i \in I} s_{i}=\sup \left\{s_{i} \mid i \in I\right\}$


## Operations in $\Omega$.

$$
\begin{aligned}
\omega_{a}:\left(\mathbb{R}_{0}^{1}\right)^{k} & \rightarrow \mathbb{R}_{0}^{1} \\
\left(s_{1}, \ldots, s_{k}\right) & \mapsto a \cdot s_{1} \cdot \ldots \cdot s_{k}
\end{aligned}
$$

$\left(k \in \mathbb{N}, a \in \mathbb{R}_{0}^{1}\right)$

## LCFRS

## Definition (LCFRS)

Let $\Delta$ be a finite set. An LCFRS over $\Delta$ is a tuple $G=(N, \Sigma, Z, R)$, where

- $N$ is a finite $\mathbb{N}$-sorted set (nonterminals),
- $\Sigma$ is a finite $\left(\mathbb{N}^{*} \times \mathbb{N}\right)$-sorted set (terminals) of the form $\left\langle\right.$ imagine, $x_{1}^{(1)} x_{1}^{(2)}, x_{2}^{(1)}$ staff, $\left.\varepsilon\right\rangle$ (sort (2, 4)),
- $Z \in N_{1}$ (initial nonterminal), and
- $R$ is a finite ranked alphabet (rules) of the form $A \rightarrow\left\langle x_{1}^{(1)} x_{1}^{(3)}, x_{1}^{(2)} x_{2}^{(1)}\right\rangle\left(A_{1}, A_{2}, A_{3}\right)$ (rank 3).


## Example

$\Delta=\{$ Local, cooks, close, restaurant $\}$
$G=(N, \Sigma, Z, R)$, where

- $N=\{S, N P, V P, N N, N N S, V B Z, V B P, J\}$
$\cdot \Sigma=\left\{\langle\right.$ Local $\rangle,\langle$ cooks $\rangle,\langle$ close $\rangle,\langle$ restaurant $\left.\rangle,\left\langle X_{1}^{(1)}\right\rangle,\left\langle x_{1}^{(1)} x_{1}^{(2)}\right\rangle\right\}$
- $Z=S$
- $R \supset\left\{S \rightarrow\left\langle x_{1}^{(1)} x_{2}^{(2)}\right\rangle(\mathrm{NPVP}), \mathrm{NP} \rightarrow\left\langle x_{1}^{(1)}\right\rangle(\mathrm{NN}), \mathrm{NN} \rightarrow\langle\right.$ Local $\left.\rangle\right\}$


## Abstract syntax trees

AST tree $d \in T_{R}$ such that for each $p \in \operatorname{pos}(d)$ :
if $d(p)=\left(A \rightarrow \sigma\left(A_{1}, \ldots A_{k}\right)\right)$, then for each $i \in\{1, \ldots, k\}$ the left-hand side of $d(p i)$ is $A_{i}$.


## RCG

## Definition (Range concatenation grammar)

An RCG is a tuple $G=(N, \Delta, Z, R)$, where

- $N$ is a finite $\mathbb{N}$-sorted set (nonterminals),
- $\Delta$ is a finite set (terminals) such that $N \cap \Delta=\emptyset$,
- $Z \in N_{1}$ (initial nonterminal), and
- $R$ is a ranked alphabet (rules) of the form $A\left(x_{1}^{(1)} x_{1}^{(3)}, x_{1}^{(2)} x_{2}^{(1)}\right) \rightarrow A_{1}\left(x_{1}^{(1)}, x_{2}^{(1)}\right) A_{2}\left(x_{2}^{(1)}\right) A_{3}\left(x_{1}^{(3)}\right)(\operatorname{rank} 3)$


## Equivalence

$R C G G=(N, \Delta, Z, R)$

$$
A\left(w_{1}, \ldots, w_{n}\right) \rightarrow A_{1}\left(x_{1}^{(1)}, \ldots, x_{l_{1}}^{(1)}\right) \ldots A_{k}\left(x_{k}^{(1)}, \ldots, x_{l_{k}}^{(1)}\right)
$$

$A \rightarrow\left\langle w_{1}, \ldots, w_{n}\right\rangle\left(A_{1}, \ldots, A_{k}\right)$ with $\left\langle w_{1}, \ldots, w_{k}\right\rangle \in \Sigma_{\left(l_{1} \ldots l_{k}, n\right)}$
LCFRS $G^{\prime}=(N, \Sigma, Z, R)$ over $\Delta$
$G$ and $G^{\prime}$ are related.

## Weighted LCFRS

## Definition (Weighted LCFRS)

Let $(S, \oplus, 0, \Omega)$ be an $M$-monoid and $G=(N, \Sigma, Z, R)$ be an LCFRS. A weighted LCFRS is a tuple ( $G, \mathrm{wt}$ ) where wt : $R \rightarrow \Omega$ is a rank-preserving mapping.

## Example

$$
\begin{aligned}
\left(S \rightarrow\left\langle x_{1}^{(1)} x_{2}^{(2)}\right\rangle(\mathrm{NP} V P)\right) & \mapsto\left(\left(s_{1}, \mathrm{~s}_{2}\right) \mapsto 1 \cdot s_{1} \cdot s_{2}\right) \\
\left(\mathrm{NP} \rightarrow\left\langle x_{1}^{(1)}\right\rangle(\mathrm{NN})\right) & \mapsto((\mathrm{s}) \mapsto 0.7 \cdot \mathrm{~s}) \\
(\mathrm{NN} \rightarrow\langle\text { Local }\rangle) & \mapsto(() \mapsto 0.25)
\end{aligned}
$$

M-monoid parsing problem

## M-monoid parsing problem

## Given

1. a complete $M$-monoid $\left(S, \Sigma^{\oplus}\right)$ with $(S, \oplus, 0, \Omega)$,
2. a weighted LCFRS ( $G, w t$ ) over $S$ where $G=(N, \Sigma, Z, R)$ is an LCFRS over $\Delta$ and wt : $R \rightarrow \Omega$, and
3. a sentence $e=e_{1} \ldots e_{n}$ with $n \geq 1$ and $e_{i} \in \Delta$

Compute parse $(e)=\sum_{d \in\left(T_{R}\right) z: \llbracket \pi_{\Sigma}(d) \rrbracket=e} h(d)$, where

- $h: T_{R} \rightarrow S$ such that $h(d)=g\left(\widehat{w t}^{1}(d)\right)$,
- $g$ is the initial homomorphism $T_{\Omega} \rightarrow S$

[^0]
## Weighted deductive parsing [Ned03]

Range vector vector $\left(\begin{array}{c}\left(l_{1}, r_{1}\right) \\ \ldots \\ \left(l_{k}, r_{k}\right)\end{array}\right)$ such that $0 \leq l_{i}<r_{i} \leq|e|$
Items $\mathcal{I}=\{[A, \vec{\kappa}] \mid A \in N \wedge \vec{\kappa} \in \operatorname{ranges}(e)\}$

## Inference rules

SCAN: $\overline{[A,(i-1, i)]} \quad$ if $\rho=\left(A \rightarrow\left\langle e_{i}\right\rangle\right)$ in $R$
RULE: $\frac{\left[B_{1}, \vec{k}_{1}\right] \ldots\left[B_{k}, \vec{k}_{k}\right]}{\left[A, \sigma\left(\vec{k}_{1}, \ldots, \vec{k}_{k}\right)\right]}$ if $\rho=\left(A \rightarrow \sigma\left(B_{1}, \ldots, B_{k}\right)\right)$ in $R$
Goal: $\quad[Z,(0,|e|)]$

## M-monoid parsing algorithm

## Input

1. an M-monoid $(S, \oplus, 0, \Omega)$,
2. an LCFRS ${ }^{-} G=(N, \Sigma, Z, R)$ over $\Delta$, and wt : $R \rightarrow \Omega$,
3. a function select : $2^{\mathcal{I}} \rightarrow \mathcal{I}$, and
4. a sentence $e=e_{1} \ldots e_{n}$ with $n \geq 1$ and $e_{i} \in \Delta$

Variables $V: \mathcal{I} \rightarrow$ S mapping
Output parse(e)

Algorithm 3.1 M-monoid parsing for LCFRS-
1: $\mathcal{A}, \mathcal{C} \leftarrow \varnothing$
2: for each $A \in N$ and $\vec{\kappa}$ range vector over $e$ do
3: $\quad V([A, \vec{\kappa}]) \leftarrow 0$
4: for each $\rho=(A \rightarrow \sigma)$ in $R$ and $[A, \vec{\kappa}]$ generated by SCAN $\frac{{ }_{[A, \vec{k}]}}{}$ do
5: $\quad V([A, \vec{\kappa}]) \leftarrow V([A, \vec{k}]) \oplus \mathrm{wt}(\rho)()$
6: $\quad \mathcal{A} \leftarrow \mathcal{A} \cup\{[A, \vec{\kappa}]\}$
7: while $\mathcal{A} \neq \emptyset$ do
8: $\quad[A, \vec{\kappa}] \leftarrow \operatorname{select}(\mathcal{A})$
9: $\quad \mathcal{A} \leftarrow \mathcal{A} \backslash\{[A, \vec{\kappa}]\}$
10: $\quad \mathcal{C} \leftarrow \mathcal{C} \cup\{[A, \vec{\kappa}]\}$
11: for each $\rho=\left(B \rightarrow \sigma\left(B_{1}, \ldots B_{k}\right)\right)$ in $R$ and $[B, \vec{\eta}]$ deduced by $\operatorname{RULE} \frac{*}{[B, \vec{\eta}]}$ from $[A, \vec{k}]$ and other items from $\mathcal{C}$ do
12: $\quad V([B, \vec{\eta}]) \leftarrow V([B, \vec{\eta}]) \oplus \mathrm{wt}(\rho)\left(V\left(\left[B_{1}, \vec{k}_{1}\right]\right), \ldots, V\left(\left[B_{k}, \vec{\kappa}_{k}\right]\right)\right)$
13: $\quad$ if $[B, \vec{\eta}] \notin \mathcal{C}$ then
14: $\quad \mathcal{A} \leftarrow \mathcal{A} \cup\{[B, \vec{\eta}]\}$
15: return $V([Z,(0, n)])$

## Example run of the algorithm

| [ $\mathrm{NN},(0,1)$ | [JJ, $(0,1)$ ] | [NNS, (1, 2)] | [VBZ, (1,2)] | [VBP, (2, 3)] | [J], (2, 3)] | [ $\mathrm{NN},(3,4)$ ] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | 0.5 | 1 - | ,' 1 |  | ' 0.5 | , 0.75 |
|  |  | ${ }_{1} \mathrm{CO}$ | $\mathrm{ks}_{2}$ |  |  | restaurant |

## Example run of the algorithm



Properties of the algorithm

## Termination I

## Theorem

The M-monoid parsing algorithm always terminates.

Relevant variables $\mathcal{A}_{i}, \mathcal{C}_{i}$ (agenda and chart in ith iteration)

$$
\mathcal{C}_{i} \xrightarrow{[A, \vec{k}] \leftarrow \operatorname{select}(\mathcal{A}), \mathcal{C} \leftarrow \mathcal{C} \cup\{[A, \vec{k}]\}} \mathcal{C}_{i+1}
$$

$\Longrightarrow \mathcal{C}_{i+1}=f\left(\mathcal{C}_{i}\right)$ with $f\left(\mathcal{C}_{i}\right)=\mathcal{C}_{i} \cup\{[A, \vec{\kappa}]\}$

## Termination II

Interpretation int : $2^{\mathcal{I}} \rightarrow \mathbb{N}$ with $\operatorname{int}(\mathcal{C})=n_{0}-|\mathcal{C}|$
( $n_{0}$ number of all items)

$$
\begin{aligned}
\operatorname{int}(\mathcal{C}) & =n_{0}-|\mathcal{C}| \\
& >n_{0}-(|\mathcal{C}|+1) \\
& =n_{0}-|\mathcal{C} \cup\{[A, \vec{\kappa}]\}|^{2} \\
& =n_{0}-|f(\mathcal{C})| \\
& =\operatorname{int}(f(\mathcal{C}))
\end{aligned}
$$

${ }^{2} \mathcal{A}$ and $\mathcal{C}$ are always disjoint

## Cyclic and acyclic LCFRS

Let $G=(N, \Delta, Z, R)$ be an RCG and $e \in \Delta^{+}$.
$G$ is cyclic for e
(otherwise acyclic)

$$
Z(e) \Rightarrow{ }_{G}^{*} \alpha A(\vec{\kappa}(e)) \beta \Rightarrow{ }_{G}^{+} \alpha^{\prime} A(\vec{\kappa}(e)) \beta^{\prime} \Rightarrow{ }_{G}^{*} \varepsilon
$$

$G$ is weakly cyclic for e
(otherise weakly acyclic)

$$
A(\vec{\kappa}(e)) \Rightarrow_{G}^{+} \alpha A(\vec{\kappa}(e)) \beta \Rightarrow_{G}^{*} \varepsilon
$$

$G$ is (weakly) cyclic
$\Leftrightarrow$ there is an $e \in \Delta^{+}$such that $G$ is (weakly) cyclic for $e$.

## Correctness for acyclic LCFRS

## Theorem

Let $G=(N, \Sigma, Z, R)$ be an LCFRS- over $\Delta$ and $e \in \Delta^{+}$such that $G$ is weakly acyclic for $e$. Then for every
$M$-monoid $(S, \oplus, 0, \Omega)$ and wt : $R \rightarrow \Omega$ there exists a function select : $2^{\mathcal{I}} \rightarrow \mathcal{I}$ such that after termination of Algorithm 3.1 for each $[A, \vec{\kappa}] \in \mathcal{C}$ it holds that

$$
V([A, \vec{\kappa}])=\sum_{d \in\left(T_{R}\right)_{A}:\left[\pi_{\Sigma}(d) \rrbracket=\vec{\kappa}(e)\right.} \bigoplus h(d) .
$$

## Corollary

Algorithm 3.1 is correct for the class of all acyclic LCFRS- .

## Item dependeny graph

$I(G, e)=(V, \leftarrow)$

- $V$ : all items that are useful for $e$
- $[B, \vec{\eta}] \leftarrow[A, \vec{k}]$ if $[B, \vec{\eta}]$ is derivable from $[A, \vec{k}]$


Front $F_{I(G, e)}(\mathcal{C})$ candidates for select

## Item dependeny graph

$I(G, e)=(V, \leftarrow)$

- $V$ : all items that are useful for $e$
- $[B, \vec{\eta}] \leftarrow[A, \vec{\kappa}]$ if $[B, \vec{\eta}]$ is derivable from $[A, \vec{k}]$


Front $F_{l(G, e)}(\mathcal{C})$ candidates for select

## Item dependeny graph

$I(G, e)=(V, \leftarrow)$

- $V$ : all items that are useful for $e$
$\cdot[B, \vec{r}] \leftarrow[A, \vec{\kappa}]$ if $[B, \vec{\eta}]$ is derivable from $[A, \vec{k}]$


Front $F_{l(G, e)}(\mathcal{C})$ candidates for select

## Item dependeny graph

$I(G, e)=(V, \leftarrow)$

- $V$ : all items that are useful for $e$
- $[B, \vec{\eta}] \leftarrow[A, \vec{k}]$ if $[B, \vec{\eta}]$ is derivable from $[A, \vec{k}]$


Front $F_{l(G, e)}(\mathcal{C})$ candidates for select

## Item dependeny graph

$I(G, e)=(V, \leftarrow)$

- $V$ : all items that are useful for $e$
- $[B, \vec{r}] \leftarrow[A, \vec{k}]$ if $[B, \vec{\eta}]$ is derivable from $[A, \vec{k}]$


Front $F_{I(G, e)}(\mathcal{C})$ candidates for select

## Item dependeny graph

$I(G, e)=(V, \leftarrow)$

- $V$ : all items that are useful for $e$
- $[B, \vec{\eta}] \leftarrow[A, \vec{k}]$ if $[B, \vec{\eta}]$ is derivable from $[A, \vec{k}]$


Front $F_{I(G, e)}(\mathcal{C})$ candidates for select

## Select function

select $_{\mid(G, e)}: 2^{\mathcal{I}} \rightarrow \mathcal{I}$

$$
J \mapsto \begin{cases}\operatorname{arb} . j \in F_{l(G, e)}\left(\mathcal{C}_{n}\right) \cap J & \text { if } F_{l(G, e)}\left(\mathcal{C}_{n}\right) \cap J \neq \emptyset \\ \operatorname{arb} . j \in J & \text { otherwise }\end{cases}
$$

## Proof sketch

## Lemma

If $G$ is weakly acyclic for e then for every $n \in \mathbb{N}$ and $[A, \vec{\kappa}] \in V$ it holds that $[A, \vec{\kappa}] \in \mathcal{C}_{n}$ implies

$$
V([A, \vec{\kappa}])=\sum_{d \in\left(T_{R}\right)_{A}: \llbracket \pi_{\Sigma}(d) \rrbracket=\vec{\kappa}(e)} h(d)
$$

for the nth and all following iterations of the body of the while loop, where $I(G, e)=(V, \leftarrow)$.

## Proof.

Follows from the Lemma with select ${ }_{(G, e)}$ as the select function.

## Inferior M-monoids i

Superior functions [Knu77, Jun06]

## Definition (Inferior operation)

Let $(S, \preceq)$ be a totally ordered set and $\omega: S^{k} \rightarrow S(k \in \mathbb{N})$ be an operation. We call $\omega \preceq$-inferior if for every $s_{1}, \ldots, s_{k}, s \in S$ and for every $i \in\{1, \ldots, k\}$ the following properties hold:

1. $s \preceq s_{i} \Rightarrow \omega\left(\ldots, s_{i-1}, s, s_{i+1}, \ldots\right) \preceq \omega\left(\ldots, s_{i-1}, s_{i}, s_{i+1}, \ldots\right)$
2. $\omega\left(s_{1}, \ldots, s_{k}\right) \preceq \min \left\{s_{1}, \ldots, s_{k}\right\}$

## Inferior M-monoids ii

## Definition (Inferior M-monoid)

Let $(S, \oplus, 0, \Omega)$ be an $M$-monoid. Moreover, let $\preceq_{\oplus}$ be the binary relation on $S$ defined for every $a, b \in S$ as follows: $a \preceq_{\oplus} b$ if $a \oplus b=b$. If $\preceq_{\oplus}$ is a total order and every $\omega \in \Omega$ is $\preceq_{\oplus}$-inferior, then we call the $M$-monoid $S$ inferior.

Example: Viterbi M-monoid

## Correctness for inferior M-monoids

## Theorem

Let $\mathcal{S}$ be the class of inferior $M$-monoids. Algorithm 3.1 is correct for $\mathcal{S}$ and the select function

$$
\begin{aligned}
\text { select : } 2^{\mathcal{I}} & \rightarrow \mathcal{I} \\
J & \mapsto \text { an arbitrary } j \in \underset{j \in J}{\arg \max } \preceq_{\oplus} V(j),
\end{aligned}
$$

where

$$
\underset{j \in J}{\arg \max } \preceq_{\oplus} V(j)=\left\{j \in J \mid V\left(j^{\prime}\right) \preceq_{\oplus} V(j) \text { for every } j^{\prime} \in j\right\}
$$

## $\mathcal{A}$ and $\mathcal{C}$ are always disjoint

For every $i \in \mathbb{N}, \mathcal{A}_{i} \cap \mathcal{C}_{i}=\emptyset$.
Induction base clear, as $\mathcal{C}_{0}=\emptyset$

Induction step

$$
\begin{aligned}
\mathcal{A}_{i} \cap \mathcal{C}_{i}= & \left(\left(\mathcal{A}_{i} \backslash\{[A, \vec{\kappa}]\}\right) \cup\left\{i \in \mathcal{I} \mid \cdots \wedge i \notin \mathcal{C}_{i+1}\right\}\right) \cap \mathcal{C}_{i+1} \\
= & \mathcal{A}_{i} \backslash\{[A, \vec{\kappa}]\} \cap\left(\mathcal{C}_{i} \cup\{[A, \vec{\kappa}]\}\right) \\
& \left.\cup\left(\left\{i \in \mathcal{I} \mid \cdots \wedge i \notin \mathcal{C}_{i+1}\right\}\right) \cap\left(\mathcal{C}_{i} \cup\{[A, \vec{\kappa}]\}\right)\right) \\
= & \left(\mathcal{A}_{i} \backslash\{[A, \vec{\kappa}]\} \cap \mathcal{C}_{i}\right) \cup\left(\mathcal{A}_{i} \backslash\{[A, \vec{\kappa}]\} \cap\{[A, \vec{\kappa}]\}\right) \cup \emptyset \\
= & \emptyset \cup \emptyset
\end{aligned}
$$

## Proof sketch i

## Lemma

If $G$ is weakly acyclic for $e$, then $I(G, e)$ is acyclic.

## Lemma

If $G$ is weakly acyclic for $e$, then $F_{I(G, e)}(\mathcal{C}) \subseteq \mathcal{A}$ is a loop invariant in each iteration of the body of the while loop (lines 7-14).

## Proof sketch ii

## Corollary

If $G$ is weakly acyclic for e then for every $n \in \mathbb{N}$ and $v, w \in V$ such that $v \leftarrow w$ it holds that $w \in F_{l(G, e)}\left(\mathcal{C}_{n}\right)$ implies $v=\operatorname{select}_{(G, e)}\left(\mathcal{A}_{i}\right)$ for some $i<n$, where $I(G, e)=(V, \leftarrow)$.

## Lemma

If $G$ is weakly acyclic for $e$, then for every $n \in \mathbb{N}$ and $[A, \vec{\kappa}] \in V$ it holds that $[A, \vec{\kappa}]=\operatorname{select}_{l(G, e)}\left(A_{n}\right)$ implies $[A, \vec{\kappa}] \in F_{l(G, e)}\left(\mathcal{C}_{n}\right)$, where $I(G, e)=(V, \leftarrow)$.

## Proof sketch iii

## Corollary

If $G$ is weakly acyclic for $e$, then for every $n \in \mathbb{N}$ and $[A, \vec{\kappa}] \in V$ it holds that $[A, \vec{\kappa}] \in \mathcal{C}_{n}$ implies $[A, \vec{\kappa}] \in F_{l(G, e)}\left(\mathcal{C}_{i}\right)$ for some $i<n$, where $I(G, e)=(V, \leftarrow)$.

## Proof sketch i

## Lemma

For every item $[A, \vec{\kappa}]$ it holds that once $[A, \vec{\kappa}]$ has been added to $\mathcal{C}, V([A, \vec{\kappa}])$ will not change anymore.

## Lemma

For every item $[A, \vec{\kappa}]$ it holds that at every point of the computation $V([A, \vec{\kappa}])=0$ or $V([A, \vec{\kappa}])=h(d)$ for $d \in\left(T_{R}\right)_{A}$ such that $\llbracket \pi_{\Sigma}(d) \rrbracket=\vec{\kappa}(e)$.

## Proof sketch ii

$$
W([A, \vec{\kappa}])=\sum_{d \in\left(T_{R}\right)_{A}: \llbracket \pi_{\Sigma}(d) \rrbracket=\vec{k}(e)} h(d)
$$

## Lemma

For every item $[A, \vec{\kappa}]$ and for every $d \in\left(T_{R}\right)_{A}$ such that $\llbracket \pi_{\Sigma}(d) \rrbracket=\vec{\kappa}(e)$ it holds that $h(d) \preceq_{\oplus} W([A, \vec{\kappa}])$.

## Lemma

For every item $[A, \vec{\kappa}]$ it holds that at every point of the computation $V([A, \vec{\kappa}]) \preceq \oplus W([A, \vec{\kappa}])$.

## Proof sketch iii

Proof.

$$
\begin{equation*}
[A, \vec{k}] \in \mathcal{C} \rightarrow V([A, \vec{k}])=W([A, \vec{k}]) \tag{I}
\end{equation*}
$$

is a loop invariant for every $A \in N$ and $\vec{\kappa} \in \operatorname{ranges}(e)$. Proof by contradiction similar to [Knu77, Jun06].

圊 Jean Christoph Jung．
Knuth＇s generalization of Dijkstra＇s algorithm．
2006.

圊 D．E．Knuth．
A Generalization of Dijkstra＇s Algorithm．
Inform．Process．Lett．，6（1）：1－5，February 1977.
圊 M．－J．Nederhof．
Weighted deductive parsing and Knuth＇s algorithm．
Computational Linguistics，29（1）：135－143， 2003.


[^0]:    ${ }^{1}$ deterministic tree relabeling induced by wt

