M-monoid parsing and reduct generation

Richard Mörbitz 13th March 2018

Introduction

Ambiguity in natural language

Local cooks close restaurant.

Ambiguity in natural language

Local cooks close restaurant.

Definitions

M-monoid

Definition (Multioperator monoid)

An M-monoid is an algebraic structure $(S, \oplus, 0, \Omega)$, such that

- $(S, \oplus, 0)$ is a commutative monoid,
- Ω is a set of operations on S such that $\forall \omega \in \Omega: \omega(\dots,0,\dots) = 0$
- $0^k \in \Omega$ for all $k \in \mathbb{N}$, $0^k : S^k \to S$ such that $0^k(s_1, \dots, s_k) = 0$, and
- Ω distributes over \oplus

S is *complete* if the infinitary sum Σ^{\oplus} exists.

3

Viterbi M-monoid

 $(\mathbb{V}, \Sigma^{\text{max}})$, where

- $\cdot \ \mathbb{V} = (\mathbb{R}^1_0, \mathsf{max}, 0, \Omega_{\cdot})$
- $\sum_{i \in I} S_i = \sup\{S_i \mid i \in I\}$

Operations in Ω .

$$\omega_a: (\mathbb{R}^1_0)^k \to \mathbb{R}^1_0$$
$$(\mathsf{S}_1, \dots, \mathsf{S}_k) \mapsto a \cdot \mathsf{S}_1 \cdot \dots \cdot \mathsf{S}_k$$

$$(k \in \mathbb{N}, a \in \mathbb{R}^1_0)$$

LCFRS

Definition (LCFRS)

Let Δ be a finite set. An LCFRS over Δ is a tuple $G = (N, \Sigma, Z, R)$, where

- \cdot N is a finite N-sorted set (nonterminals),
- Σ is a finite ($\mathbb{N}^* \times \mathbb{N}$)-sorted set (terminals) of the form (imagine, $x_1^{(1)}x_1^{(2)}, x_2^{(1)}$ staff, ε) (sort (2, 4)),
- $\cdot Z \in N_1$ (initial nonterminal), and
- *R* is a finite ranked alphabet (rules) of the form $A \to \langle x_1^{(1)} x_1^{(3)}, x_1^{(2)} x_2^{(1)} \rangle (A_1, A_2, A_3)$ (rank 3).

5

Example

```
\begin{split} &\Delta = \{ \text{Local}, \text{cooks}, \text{close}, \text{restaurant} \} \\ &G = (N, \Sigma, Z, R), \text{ where} \\ & \cdot N = \{ \text{S}, \text{NP}, \text{VP}, \text{NN}, \text{NNS}, \text{VBZ}, \text{VBP}, \text{JJ}} \} \\ & \cdot \Sigma = \{ \langle \text{Local} \rangle, \langle \text{cooks} \rangle, \langle \text{close} \rangle, \langle \text{restaurant} \rangle, \langle x_1^{(1)} \rangle, \langle x_1^{(1)} x_1^{(2)} \rangle \} \\ & \cdot Z = \text{S} \\ & \cdot R \supset \{ \text{S} \rightarrow \langle x_1^{(1)} x_2^{(2)} \rangle (\text{NP VP}), \text{NP} \rightarrow \langle x_1^{(1)} \rangle (\text{NN}), \text{NN} \rightarrow \langle \text{Local} \rangle \} \end{split}
```

Abstract syntax trees

AST tree $d \in T_R$ such that for each $p \in pos(d)$: if $d(p) = (A \to \sigma(A_1, ..., A_k))$, then for each $i \in \{1, ..., k\}$ the left-hand side of d(pi) is A_i .

$$\begin{array}{c|c} S \rightarrow \langle x_1^{(1)} x_1^{(2)} \rangle (\text{NP,VP}) \\ \hline \text{NP} \rightarrow \langle x_1^{(1)} x_1^{(2)} \rangle (\text{JJ,NNS}) & \text{VP} \rightarrow \langle x_1^{(1)} x_1^{(2)} \rangle (\text{VBP,NP}) \\ \hline \\ \text{JJ} \rightarrow \langle \text{Local} \rangle & \text{NNS} \rightarrow \langle \text{cooks} \rangle & \text{VBP} \rightarrow \langle \text{close} \rangle & \text{NP} \rightarrow \langle x_1^{(1)} \rangle (\text{NN}) \\ \hline & & \text{NN} \rightarrow \langle \text{restaurant} \rangle \end{array}$$

Definition (Range concatenation grammar)

An RCG is a tuple $G = (N, \Delta, Z, R)$, where

- N is a finite N-sorted set (nonterminals),
- · Δ is a finite set (terminals) such that $N \cap \Delta = \emptyset$,
- $Z \in N_1$ (initial nonterminal), and
- R is a ranked alphabet (rules) of the form $A(x_1^{(1)}x_1^{(3)}, x_1^{(2)}x_2^{(1)}) \to A_1(x_1^{(1)}, x_2^{(1)})A_2(x_2^{(1)})A_3(x_1^{(3)}) \text{ (rank 3)}$

Equivalence

RCG
$$G = (N, \Delta, Z, R)$$

$$A(w_1, ..., w_n) \to A_1(x_1^{(1)}, ..., x_{l_1}^{(1)}) ... A_k(x_k^{(1)}, ..., x_{l_k}^{(1)})$$

$$A \to \langle w_1, ..., w_n \rangle (A_1, ..., A_k) \text{ with } \langle w_1, ..., w_k \rangle \in \Sigma_{(l_1...l_k, n)}$$

G and G' are related.

LCFRS $G' = (N, \Sigma, Z, R)$ over Δ

Weighted LCFRS

Definition (Weighted LCFRS)

Let $(S, \oplus, 0, \Omega)$ be an M-monoid and $G = (N, \Sigma, Z, R)$ be an LCFRS. A weighted LCFRS is a tuple (G, wt) where $wt : R \to \Omega$ is a rank-preserving mapping.

Example

$$(S \to \langle x_1^{(1)} x_2^{(2)} \rangle (NP \ VP)) \mapsto ((s_1, s_2) \mapsto 1 \cdot s_1 \cdot s_2)$$
$$(NP \to \langle x_1^{(1)} \rangle (NN)) \mapsto ((s) \mapsto 0.7 \cdot s)$$
$$(NN \to \langle Local \rangle) \mapsto (() \mapsto 0.25)$$

M-monoid parsing problem

M-monoid parsing problem

Given

- 1. a complete M-monoid (S, Σ^{\oplus}) with $(S, \oplus, 0, \Omega)$,
- 2. a weighted LCFRS (G, wt) over S where $G=(N,\Sigma,Z,R)$ is an LCFRS over Δ and wt : $R\to\Omega$, and
- 3. a sentence $e = e_1 \dots e_n$ with $n \ge 1$ and $e_i \in \Delta$

Compute parse(
$$e$$
) = $\sum_{d \in (T_R)_Z : [\![\pi_{\Sigma}(d)]\!] = e} \bigoplus_{d \in (T_R)_Z : [\![\pi_{\Sigma}(d)]\!] = e} h(d)$, where

- $h: T_R \to S$ such that $h(d) = g(\widehat{wt}^1(d))$,
- g is the initial homomorphism $T_{\Omega} \to S$

¹deterministic tree relabeling induced by wt

Weighted deductive parsing [Ned03]

Range vector vector
$$\begin{pmatrix} (l_1, r_1) \\ \dots \\ (l_k, r_k) \end{pmatrix}$$
 such that $0 \le l_i < r_i \le |e|$

Items
$$\mathcal{I} = \{ [A, \vec{\kappa}] \mid A \in N \land \vec{\kappa} \in \mathsf{ranges}(e) \}$$

Inference rules

SCAN:
$$_{\overline{[A,(i-1,i)]}}$$
 if $\rho = (A \rightarrow \langle e_i \rangle)$ in R

RULE:
$$\frac{[B_1,\vec{\kappa}_1] \dots [B_k,\vec{\kappa}_k]}{[A,\sigma(\vec{\kappa}_1,\dots,\vec{\kappa}_k)]} \quad \text{if } \rho = (A \to \sigma(B_1,\dots,B_k)) \text{ in } R$$

Goal: [Z, (0, |e|)]

M-monoid parsing algorithm

Input

- 1. an M-monoid $(S, \oplus, 0, \Omega)$,
- 2. an LCFRS⁻ $G = (N, \Sigma, Z, R)$ over Δ , and wt : $R \rightarrow \Omega$,
- 3. a function select : $2^{\mathcal{I}} \to \mathcal{I}$, and
- 4. a sentence $e = e_1 \dots e_n$ with $n \ge 1$ and $e_i \in \Delta$

Variables $V: \mathcal{I} \to S$ mapping

Output parse(e)

Algorithm 3.1 M-monoid parsing for LCFRS⁻

1: $\mathcal{A}, \mathcal{C} \leftarrow \emptyset$ 2: **for** each $A \in N$ and $\vec{\kappa}$ range vector over e **do** $V([A, \vec{\kappa}]) \leftarrow 0$ 4: **for** each $\rho = (A \to \sigma)$ in R and $[A, \vec{\kappa}]$ generated by SCAN $A \to \sigma$ 5: $V([A, \vec{\kappa}]) \leftarrow V([A, \vec{\kappa}]) \oplus \text{wt}(\rho)()$ 6: $\mathcal{A} \leftarrow \mathcal{A} \cup \{[A, \vec{\kappa}]\}$ 7: while $A \neq \emptyset$ do 8: $[A, \vec{\kappa}] \leftarrow \text{select}(\mathcal{A})$ 9: $\mathcal{A} \leftarrow \mathcal{A} \setminus \{[A, \vec{\kappa}]\}$ 10: $\mathcal{C} \leftarrow \mathcal{C} \cup \{[A, \vec{\kappa}]\}$ for each $\rho = (B \to \sigma(B_1, \dots B_k))$ in R and $[B, \vec{\eta}]$ deduced by 11: RULE $\frac{*}{[B.\vec{n}]}$ from $[A, \vec{\kappa}]$ and other items from \mathcal{C} do $V([B, \vec{\eta}]) \leftarrow V([B, \vec{\eta}]) \oplus \operatorname{wt}(\rho)(V([B_1, \vec{\kappa}_1]), \dots, V([B_b, \vec{\kappa}_b]))$ 12: if $[B, \vec{\eta}] \notin \mathcal{C}$ then 13: $\mathcal{A} \leftarrow \mathcal{A} \cup \{[B, \vec{\eta}]\}$ 14: 15: return V([Z, (0, n)])

Properties of the algorithm

Termination I

Theorem

The M-monoid parsing algorithm always terminates.

Relevant variables A_i , C_i (agenda and chart in *i*th iteration)

$$C_i \xrightarrow{[A, \vec{\kappa}] \leftarrow \mathsf{select}(A), C \leftarrow C \cup \{[A, \vec{\kappa}]\}} C_{i+1}$$

$$\Longrightarrow \mathcal{C}_{i+1} = f(\mathcal{C}_i) \text{ with } f(\mathcal{C}_i) = \mathcal{C}_i \cup \{[A, \vec{\kappa}]\}$$

Termination II

Interpretation int : $2^{\mathcal{I}} \to \mathbb{N}$ with $int(\mathcal{C}) = n_0 - |\mathcal{C}|$ (n_0 number of all items)

$$int(\mathcal{C}) = n_0 - |\mathcal{C}|$$

$$> n_0 - (|\mathcal{C}| + 1)$$

$$= n_0 - |\mathcal{C} \cup \{[A, \vec{\kappa}]\}|^2$$

$$= n_0 - |f(\mathcal{C})|$$

$$= int(f(\mathcal{C}))$$

 $^{^2\}mathcal{A}$ and \mathcal{C} are always disjoint

Cyclic and acyclic LCFRS

Let $G = (N, \Delta, Z, R)$ be an RCG and $e \in \Delta^+$.

G is cyclic for e

(otherwise acyclic)

$$Z(e) \Rightarrow_{G}^{*} \alpha A(\vec{\kappa}(e))\beta \Rightarrow_{G}^{+} \alpha' A(\vec{\kappa}(e))\beta' \Rightarrow_{G}^{*} \varepsilon$$

G is weakly cyclic for e

(otherise weakly acyclic)

$$A(\vec{\kappa}(e)) \Rightarrow_{\mathcal{G}}^+ \alpha A(\vec{\kappa}(e))\beta \Rightarrow_{\mathcal{G}}^* \varepsilon$$

G is (weakly) cyclic

 \Leftrightarrow there is an $e \in \Delta^+$ such that G is (weakly) cyclic for e.

Correctness for acyclic LCFRS

Theorem

Let $G=(N,\Sigma,Z,R)$ be an LCFRS $^-$ over Δ and $e\in\Delta^+$ such that G is weakly acyclic for e. Then for every M-monoid $(S,\oplus,0,\Omega)$ and wt : $R\to\Omega$ there exists a function select : $2^\mathcal{I}\to\mathcal{I}$ such that after termination of Algorithm 3.1 for each $[A,\vec{\kappa}]\in\mathcal{C}$ it holds that

$$V([A, \vec{\kappa}]) = \sum_{d \in (T_R)_A : [\![\pi_{\Sigma}(d)]\!] = \vec{\kappa}(e)} h(d) .$$

Corollary

Algorithm 3.1 is correct for the class of all acyclic LCFRS⁻.

$$I(G,e) = (V,\leftarrow)$$

- V: all items that are useful for e
- $[B, \vec{\eta}] \leftarrow [A, \vec{\kappa}]$ if $[B, \vec{\eta}]$ is derivable from $[A, \vec{\kappa}]$

Front $F_{I(G,e)}(\mathcal{C})$ candidates for select

$$I(G,e) = (V,\leftarrow)$$

- · V: all items that are useful for e
- $[B, \vec{\eta}] \leftarrow [A, \vec{\kappa}]$ if $[B, \vec{\eta}]$ is derivable from $[A, \vec{\kappa}]$

Front $F_{I(G,e)}(C)$ candidates for select

$$I(G,e) = (V,\leftarrow)$$

- V: all items that are useful for e
- $[B, \vec{\eta}] \leftarrow [A, \vec{\kappa}]$ if $[B, \vec{\eta}]$ is derivable from $[A, \vec{\kappa}]$

Front $F_{I(G,e)}(\mathcal{C})$ candidates for select

$$I(G,e) = (V,\leftarrow)$$

- · V: all items that are useful for e
- $[B, \vec{\eta}] \leftarrow [A, \vec{\kappa}]$ if $[B, \vec{\eta}]$ is derivable from $[A, \vec{\kappa}]$

Front $F_{I(G,e)}(C)$ candidates for select

$$I(G,e) = (V,\leftarrow)$$

- · V: all items that are useful for e
- $[B, \vec{\eta}] \leftarrow [A, \vec{\kappa}]$ if $[B, \vec{\eta}]$ is derivable from $[A, \vec{\kappa}]$

Front $F_{I(G,e)}(\mathcal{C})$ candidates for select

$$I(G,e) = (V,\leftarrow)$$

- · V: all items that are useful for e
- $[B, \vec{\eta}] \leftarrow [A, \vec{\kappa}]$ if $[B, \vec{\eta}]$ is derivable from $[A, \vec{\kappa}]$

Front $F_{I(G,e)}(\mathcal{C})$ candidates for select

Select function

$$select_{I(G,e)}: 2^{\mathcal{I}} \to \mathcal{I}$$

$$J \mapsto \begin{cases} arb. \ j \in F_{I(G,e)}(\mathcal{C}_n) \cap J & \text{if } F_{I(G,e)}(\mathcal{C}_n) \cap J \neq \emptyset \\ arb. \ j \in J & \text{otherwise} \end{cases}$$

Proof sketch

Lemma

If G is weakly acyclic for e then for every $n \in \mathbb{N}$ and $[A, \vec{\kappa}] \in V$ it holds that $[A, \vec{\kappa}] \in C_n$ implies

$$V([A, \vec{\kappa}]) = \sum_{d \in (T_R)_A : [\pi_{\Sigma}(d)] = \vec{\kappa}(e)} h(d)$$

for the nth and all following iterations of the body of the while loop, where $I(G,e) = (V, \leftarrow)$.

Proof.

Follows from the Lemma with $select_{I(G,e)}$ as the select function.

Inferior M-monoids i

Superior functions [Knu77, Jun06]

Definition (Inferior operation)

Let (S, \preceq) be a totally ordered set and $\omega : S^k \to S \ (k \in \mathbb{N})$ be an operation. We call $\omega \preceq$ -inferior if for every $s_1, \ldots, s_k, s \in S$ and for every $i \in \{1, \ldots, k\}$ the following properties hold:

- 1. $s \leq s_i \Rightarrow \omega(\ldots, s_{i-1}, s, s_{i+1}, \ldots) \leq \omega(\ldots, s_{i-1}, s_i, s_{i+1}, \ldots)$
- 2. $\omega(s_1,\ldots,s_k) \leq \min\{s_1,\ldots,s_k\}$

Inferior M-monoids ii

Definition (Inferior M-monoid)

Let $(S,\oplus,0,\Omega)$ be an M-monoid. Moreover, let \preceq_{\oplus} be the binary relation on S defined for every $a,b\in S$ as follows: $a\preceq_{\oplus} b$ if $a\oplus b=b$. If \preceq_{\oplus} is a total order and every $\omega\in\Omega$ is \preceq_{\oplus} -inferior, then we call the M-monoid S inferior.

Example: Viterbi M-monoid

Correctness for inferior M-monoids

Theorem

Let ${\cal S}$ be the class of inferior M-monoids. Algorithm 3.1 is correct for ${\cal S}$ and the select function

$$select: 2^{\mathcal{I}} \to \mathcal{I}$$

$$J \mapsto an \ arbitrary \ j \in \arg\max_{j \in J} {}_{\preceq_{\oplus}} V(j) \ ,$$

where

$$\underset{j \in J}{\arg\max} \, \underline{\prec}_{\oplus} \, V(j) = \{ j \in J \mid V(j') \, \underline{\prec}_{\oplus} \, V(j) \, \text{for every } j' \in j \} \ .$$

${\mathcal A}$ and ${\mathcal C}$ are always disjoint

For every $i \in \mathbb{N}$, $A_i \cap C_i = \emptyset$.

Induction base clear, as $C_0 = \emptyset$

Induction step

$$\mathcal{A}_{i} \cap \mathcal{C}_{i} = ((\mathcal{A}_{i} \setminus \{[A, \vec{\kappa}]\}) \cup \{i \in \mathcal{I} \mid \dots \land i \notin \mathcal{C}_{i+1}\}) \cap \mathcal{C}_{i+1}$$

$$= \mathcal{A}_{i} \setminus \{[A, \vec{\kappa}]\} \cap (\mathcal{C}_{i} \cup \{[A, \vec{\kappa}]\})$$

$$\cup (\{i \in \mathcal{I} \mid \dots \land i \notin \mathcal{C}_{i+1}\}) \cap (\mathcal{C}_{i} \cup \{[A, \vec{\kappa}]\}))$$

$$= (\mathcal{A}_{i} \setminus \{[A, \vec{\kappa}]\} \cap \mathcal{C}_{i}) \cup (\mathcal{A}_{i} \setminus \{[A, \vec{\kappa}]\} \cap \{[A, \vec{\kappa}]\}) \cup \emptyset$$

$$= \emptyset \cup \emptyset$$

Proof sketch i

Lemma

If G is weakly acyclic for e, then I(G, e) is acyclic.

Lemma

If G is weakly acyclic for e, then $F_{I(G,e)}(C) \subseteq A$ is a loop invariant in each iteration of the body of the while loop (lines 7–14).

Proof sketch ii

Corollary

If G is weakly acyclic for e then for every $n \in \mathbb{N}$ and $v, w \in V$ such that $v \leftarrow w$ it holds that $w \in F_{I(G,e)}(\mathcal{C}_n)$ implies $v = \mathsf{select}_{I(G,e)}(\mathcal{A}_i)$ for some i < n, where $I(G,e) = (V, \leftarrow)$.

Lemma

If G is weakly acyclic for e, then for every $n \in \mathbb{N}$ and $[A, \vec{\kappa}] \in V$ it holds that $[A, \vec{\kappa}] = \operatorname{select}_{I(G,e)}(A_n)$ implies $[A, \vec{\kappa}] \in F_{I(G,e)}(C_n)$, where $I(G,e) = (V, \leftarrow)$.

Proof sketch iii

Corollary

If G is weakly acyclic for e, then for every $n \in \mathbb{N}$ and $[A, \vec{\kappa}] \in V$ it holds that $[A, \vec{\kappa}] \in C_n$ implies $[A, \vec{\kappa}] \in F_{I(G,e)}(C_i)$ for some i < n, where $I(G, e) = (V, \leftarrow)$.

Proof sketch i

Lemma

For every item $[A, \vec{\kappa}]$ it holds that once $[A, \vec{\kappa}]$ has been added to C, $V([A, \vec{\kappa}])$ will not change anymore.

Lemma

For every item $[A, \vec{\kappa}]$ it holds that at every point of the computation $V([A, \vec{\kappa}]) = 0$ or $V([A, \vec{\kappa}]) = h(d)$ for $d \in (T_R)_A$ such that $[\![\pi_{\Sigma}(d)]\!] = \vec{\kappa}(e)$.

Proof sketch ii

$$W([A, \vec{\kappa}]) = \sum_{d \in (T_R)_A : [[\pi_{\Sigma}(d)]] = \vec{\kappa}(e)} h(d)$$

Lemma

For every item $[A, \vec{\kappa}]$ and for every $d \in (T_R)_A$ such that $[\![\pi_{\Sigma}(d)]\!] = \vec{\kappa}(e)$ it holds that $h(d) \leq_{\oplus} W([A, \vec{\kappa}])$.

Lemma

For every item $[A, \vec{\kappa}]$ it holds that at every point of the computation $V([A, \vec{\kappa}]) \leq_{\oplus} W([A, \vec{\kappa}])$.

Proof sketch iii

Proof.

$$[A, \vec{\kappa}] \in \mathcal{C} \to V([A, \vec{\kappa}]) = W([A, \vec{\kappa}]) \tag{1}$$

is a loop invariant for every $A \in N$ and $\vec{\kappa} \in \text{ranges}(e)$.

Proof by contradiction similar to [Knu77, Jun06].

Jean Christoph Jung.

Knuth's generalization of Dijkstra's algorithm.

D.E. Knuth.

A Generalization of Dijkstra's Algorithm.

Inform. Process. Lett., 6(1):1–5, February 1977.

M.-J. Nederhof.

Weighted deductive parsing and Knuth's algorithm.

Computational Linguistics, 29(1):135–143, 2003.