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Introduction



Ambiguity in natural language

Local cooks close restaurant.
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Definitions



Definition (Multioperator monoid)
An M-monoid is an algebraic structure (S, @, 0,Q), such that

- (S,9,0) is a commutative monoid,

- Qs a set of operations on S such that
VweQ:w(...,0,...)=0

- 0k e Qforallk e N, 0F : S¥ — S such that
0R(s1,...,s,) =0, and

- Q distributes over @

S is complete if the infinitary sum ¥ exists.



Viterbi M-monoid

(V, Yy max) where

- V= (R}, max, 0,Q.)
© XM si =sup{s; i€}
Operations in Q.

wq : (R)F = RY

(S1,-.-,Sp)—>a-S1-... S



LCFRS

Definition (LCFRS)
Let A be a finite set. An LCFRS over A is a tuple
G=(N,%,Z,R), where
- N is a finite N-sorted set (nonterminals),
- ¥ is a finite (N* x N)-sorted set (terminals) of the form
(imagine, x1( ))9( ),x§1)staff, g) (sort (2,4)),
- Z € N4 (initial nonterminal), and

- Ris afinite ranked alphabet (rules) of the form
A = XX D (yca; A, A3) (rank 3).



A = {Local, cooks, close, restaurant}

G=(N,%,Z,R), where

- N = {S,NP,VP,NN, NNS, VBZ, VBP, JJ}

- ¥ = {(Local), (cooks), (close), (restaurant), (x ()> <x1(1)x1(2)>}
0 £ =§

- R {S = XDy (NP VP), NP — (x{V)(NN), NN — (Local)}



Abstract syntax trees

AST tree d € Tg such that for each p € pos(d):
ifd(p) = (A — o(Ar,...AR)),
then for each i € {1,..., R} the left-hand side of d(pi) is A;.

s — 6{xPy(NP, vp)
— ~
NP — (x5, NNS) vP — (xXxPy(vBP, NP)
e AN e N
J) = (Local)  NNS — (cooks) ~ VBP — (close) NP — (x{")(NN)

NN — (restaurant)



Definition (Range concatenation grammar)

An RCG is a tuple G = (N, A, Z,R), where

- N is a finite N-sorted set (nonterminals),
- Ais a finite set (terminals) such that NN A = ),
- Z € N, (initial nonterminal), and

- Ris a ranked alphabet (rules) of the form
A(X1(1)X1(3),X1(2)X§1)) — A (X1(1),X§1))A2(X§1))A3(X1(3)) (rank 3)



RCG G = (N,A,Z,R)

A(W1, cey,Wp) = A_q(xp, . ,x@_) . .Ak(xf(:), . .»,xm)

A= (W, ..., Wn)(Ar, ..., A) With (Wa,...,Wk) € Z(i,. 1,.n)

LCFRS G" = (N, X, Z,R) over A

G and G’ are related.



Weighted LCFRS

Definition (Weighted LCFRS)

Let (S, ,0,Q) be an M-monoid and G = (N, %, Z,R) be an
LCFRS. A weighted LCFRS is a tuple (G, wt) where wt : R — Q is
a rank-preserving mapping.

(S = VNP VP)) 5 ((51,52) = 151+ 5))
(NP — (XY (NN)) = ((5) — 0.7 - 5)
(NN — (Local)) ~ (() — 0.25)
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M-monoid parsing problem




M-monoid parsing problem

Given

1. a complete M-monoid (S, Y_®) with (S, ®,0,Q),
2. a weighted LCFRS (G, wt) over S where
G=(N,x,Z,R) is an LCFRS over A and wt : R — €, and

3. asentencee=e...epwithn>1ande € A

Compute parse(e) = Y D h(d), where
de(Tr)z:[rx(d)]=e

- h:Tg — S such that h(d) = g(wt'(d)),

- g is the initial homomorphism Tq — S

'deterministic tree relabeling induced by wt

n



Weighted deductive parsing [Ned03]

(b, )

Range vector vector suchthat0 < [j <r; < |e|
(L, r)
ltems Z = {[A,R] | A € NAR € ranges(e)}

Inference rules

SCAN: if p=(A— (g))in R

(A, (I=1,0)]

RULE: [BuFl - Bl if ) — (A = o(By,...,Bg)) in R

[A,o(Rq,... RR)]

Goal:  [Z,(0,e])]
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M-monoid parsing algorithm

Input

1. an M-monoid (S, 4, 0,9Q),

2. an LCFRS™ G = (N, X,Z,R) over A, and wt : R — Q,
3. a function select: 22 — 7, and

4. asentencee=ey...epwithn>1ande € A

Variables V : T — S mapping

Output parse(e)

13



Algorithm 3.1 M-monoid parsing for LCFRS™
1 AC+ @
. for each A € N and & range vector over e do
V([A,R]) «+ O

2

3

4 for each p = (A — o) in Rand [A, R] generated by SCAN 7 do

5 V([AR]) < V([A, K]) & wt(p)()

6: A+ AU{[AR]}

7. while A # () do

8 [A, R] < select(.A)

9 A~ A\ A{[A K]}

10: C + CU{[AR]}

11: for each p = (B — o(By,...Bg)) in R and [B,7] deduced by
RULE 5 from [A, K] and other items from C do

12: ([B ) < V([B,7) © wt(p)(V([Br, Fal), - - -, V([Br, Rr]))
13: if [B,7]] & C then
14 A+~ AU{[B,7]}

15: return V([Z, (0, n)])




Example run of the algorithm

[NN, (0, D] [, (0,D]  [NNS,(1,2)] [VBZ,(1,2)] [VBP,(2,3)]  [I,(2,3)] NN, (3,4)]

olLocaly 1co0ks; scloses srestaurant,
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Example run of the algorithm

[NP, (0,1)]

NN, (0, 1] | [, (0,11 [NNS,(1,2)] [VBZ,(1,2)] [VBP,(2,3)]  [I,(2,3)]  [NN,(3,4)]

’ \ ’
’ \ ’ \ ’ !
\ 4 N 4 N z |

olLocaly 1co0ks; ,closes srestaurant,

15



Example run of the algorithm

[NP, (0,1)]

(v, 1) (W01 NS, (1,2)] vBZ,(1,2)] vBP,@3)] DL (23)] (NN, (3,4)]

olLocaly 1co0ks; ,closes srestaurant,
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Example run of the algorithm

[NP, (0,1)] [NP, (0,2)]

(v, 1) (001 (Inns, (1,2)1) vBz, (1 2)] vBP, @3] IL(23)] (NN, (3,4)]

olLocaly 1co0ks; ,closes srestaurant,
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Example run of the algorithm

[NP, (0,1)] [NP, (0,2)]

(v, 0, 1) (0,01 (INns, (1,201 VBZ, (1,2)]) V8P, 2.3)] - D, (23)] NN, (3,4)]

olLocaly 1co0ks; ,closes srestaurant,
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Example run of the algorithm

[NP, (0,1)] [NP, (0,2)]

(v, 0, 1) (. 0,11 (Ivws, (1,201 ) vez, (1,2)1 (vBP, 2.3)]) 0,2 3)] NN, (3,4)]

olLocaly 1co0ks; ,closes srestaurant,

15



Example run of the algorithm

[NP, (0,1)] [NP, (0,2)]

(. 001 (0, 01) (s, (.20 vez, (.21 vep. .31 (0, @.3)1) - 1NN 3,4]

olLocaly 1co0ks; ,closes srestaurant,
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Example run of the algorithm

[NP, (0,1)] [NP, (0,2)]

INP, (2, 4)] [NP, (3, 4)]

[[NN (0,7) ]] [[J (0,1)] j [[NNS (1 2)]}[[VBZ (1 2)]][[VBP @, 3)]} [[JJ @ 3)] [NN G, 4)]]

oLocah qcooksz 2Cl05€3 3restauran’u+
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Example run of the algorithm

[NP, (0,1)] [NP, (0,2)]
T

[NP, (2, 4)] [NP, (3,4)]

L

(v, 0,1) (D, 0,1 (Iws, (1,201 vez, (1,2)1 ) [ver, 2.3)1) (D, @ 31 ([N, 3, 4)1)

\ ’ \ ’ !
\ 4 N 4 N z |

oLocaly 1cooks, ,closes srestaurant,
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Example run of the algorithm

[NP7(O,1)] [NP7 2)]

[NP, (2, 4)] [NP, (3,4)]
AN [

[[NN (0,1) ]j [[J (0,7)] [NNS R 2) [[VBZ R 2)]}[[VBP @ 3)]] [[JJ @ 3)]] [[NN,(3,4)]j

’ \ ’ !
\ 4 N z |

oLocah 1cooks, ,closes srestaurant,
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Example run of the algorithm

[NP7(O,1)] [NP7 2)] [VP, (2, 4)]

/ INP, (2,4)]
T

[[NN (0,1) ]j [[J (0,7)] [NNS R 2) [[VBZ R 2)]}[[VBP @ 3)]] [[JJ @ 3)]] [[NN,(3,4)]j

<
’ \ ’ !
\ 4 N z |

oLocah 1cooks, ,closes srestaurant,
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Example run of the algorithm

[NP, (0,7)] [NP, (0,2)] [VP, (1,4)] [VP, (2, 4)]
T

[NP, (2, 4)]

(v, 0, 1) (D, 0,01 (Iws, (1,201 vez, (1,2)1 ) Ive, 2.3)1) (D, @ 3 ([N, 3, 4)1)

N |
\ 4 N 4 N z |

oLocaly 1cooks, ,closes srestaurant,
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Example run of the algorithm

[5,(0,4)]

[NP, (0,1)] [NP, (0,2)] [VP, (1,4)] [VP, (2, 4)]
7 T T

\

[NP, (2,4)]

[[NN,(O,\W)]} [[JJ,(OJ)]] [[NNS,(w,z)]][[VBz, (LZ)]}[[VBF@(ZS)]] [[117(2,3)]] [[NN,@,A)}]

oLocaly 1€c00ks; ,closes srestaurant,
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Example run of the algorithm

[5,(0,4)]

[NP, (2,4)]

\

[[NN 0,1 ]j [[J (0,7)] [NNS (1.2)] [[VBZ 1 2)]][[VBP @, 3)]] [[JJ @ 3)]] [NN, (3 4)]]

oLocah qcooksz 2close3 srestaurant,

15



Example run of the algorithm

5, (0, 4)]

[NP, (0,1)] [VP, (1, 4)] [VP, (2, 4)]

[NP, (2,4)]

\\

\

[[NN, (0,1) ]j [[J (0 1)]] [[NNS (1,2)] ][[\/BZ R 2)]}[[VBP @, 3)]] [[JJ @, 3)]] NN, 3 4)]j

<

\ ’ \ !
\ 4 N 4 N / |

oLocaly 1c00ks, ,closes srestaurant,
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Properties of the algorithm




Termination |

Theorem
The M-monoid parsing algorithm always terminates.

A;, C; (agenda and chart in ith iteration)

[A, R] « select(A), C « CU{[A,R]}
Ci i+1

= Ciyr = f(C;) with f(C;) = C; U {[A, R]}



Termination Il

Interpretation int : 22 — N with int(C) = no — |C]|
(ng number of all items)

int(C) = ng — |C|
>ng— (|C|+1)
= no — [C U {[A, R]}?
= no — |f(C)|
= int(f(C))

2 A and C are always disjoint



Cyclic and acyclic LCFRS

Let G=(N,A,Z,R) bean RCGand e € A™.

G is cyclic for e (otherwise acyclic)

Z(e) =¢ aA(R(e))B =¢ d/A(R(e))B =t e

G is weakRly cyclic for e (otherise weakly acyclic)

A(R(e)) =¢ aA(R(e))8 =& e

G is (weakly) cyclic
& there is an e € AT such that G is (weakly) cyclic for e.



Correctness for acyclic LCFRS

Theorem

let G=(N,%,Z,R) be an LCFRS™ over A and e € A" such
that G is weaRly acyclic for e. Then for every

M-monoid (S, ®,0,Q) and wt : R — Q there exists a function
select : 27 — T such that after termination of Algorithm 3.1 for
each [A,R] € C it holds that

V([A, R]) = y @ h(d) .

de(Tr)a:[ms(d)]=K(e)

Corollary
Algorithm 3.1 is correct for the class of all acyclic LCFRS™.



Iltem dependeny graph

I(G,e) =(V,<+)

- V: all items that are useful for e
- [B, 7] « [A,R] if [B,7] Is derivable from [A, K]

VP, (2, 4)]
INP, (3, 4)]
[VBP, (2,3)] [NN, (3,4)]

Front Fy(6.¢)(C) candidates for select

20



Iltem dependeny graph

I(G, e) = (V, <)

- V: all items that are useful for e
- [B,7] < [A,R] if [B, 7] is derivable from [A, K]

VP, (2,4)]
NP, (3, 4)]
[VBP, (2,3)] INN, (3, 4)]

Front F(6 ¢)(C) candidates for select

20



Iltem dependeny graph
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Iltem dependeny graph
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Iltem dependeny graph

I(G,e)=(V,+)

- V: all items that are useful for e
- [B, 7] « [A,R] if [B,7] is derivable from [A, K]

[NP, (3, 4)]

[VBP, (2,3)] [NN, (3, 4)]

Front Fy¢)(C) candidates for select
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Select function

select;ge) : 2T 51

L, ) arJ € Fige)(Cn) N if Fie)(Ca) 1) # 0
arb.j e otherwise

21



Lemma

If G is weakly acyclic for e then for every n € N and [A,R] € V
it holds that [A, K] € Cy implies

V(A R]) = Yy P h(d)
dG(TR)Aiﬂﬂ'z(d)ﬂ:I_{(e)

for the nth and all following iterations of the body of the
while loop, where [(G, e) = (V, <+).

Proof.

Follows from the Lemma with select;s ¢y as the select
function.

22



Inferior M-monoids i

[Knu77, Jun06]

Definition (Inferior operation)

Let (S, <) be a totally ordered set and w : S* — S (k € N) be
an operation. We call w =<-inferior if for every s4,...,S,,5 € S
and for every i € {1,..., R} the following properties hold:

1.s=<si=w(...,5_1,5Sit1,---) 2w(--., 51,5 Six1,---)

2. w(51,. : .,Sk) = min{51,... ,ng}

23



Inferior M-monoids ii

Definition (Inferior M-monoid)

Let (S,®,0,Q) be an M-monoid. Moreover, let <g be the
binary relation on S defined for every a,b € S as follows:
a=<gbifa®b=0>b.If <4 isatotal order and everyw € Q is
=g-inferior, then we call the M-monoid S inferior.

Example: Viterbi M-monoid

2%



Correctness for inferior M-monoids

Theorem

Let S be the class of inferior M-monoids. Algorithm 3.1 is
correct for S and the select function

select : 27 — T

J = an arbitrary j € argmax <, V(j) ,
JEJ

where
argmax <, V(j) = {j € /| V(/') =a V()) for every | € j} .

JEJ

25



A and C are always disjoint

Foreveryie N, A4 NC = 0.
Induction base clear, as Cp = 0
Induction step
AinCi = ((AN{[ARIDU{eZ] - ANi¢Cita}) NCiyy
= A\ {[A, &} N (G U{[A &]})
UieZ| - NigCi})N(CU{[AR]L)

= (A N\ A{[A RN C) U (AN A{IA R N {[AR] ) U
=Qu



Lemma

If G is weakRly acyclic for e, then I(G, e) is acyclic.
Lemma

If G is weaRly acyclic for e, then Fy¢)(C) € A is a loop
invariant in each iteration of the body of the while loop
(lines 7-14).



Corollary

If G is weaRly acyclic for e then for every n € N and v,w € V
such that v < w it holds that w € Fyge)(Cn) implies
v = select;g ¢)(A;) for some i < n, where I(G, e) = (V, ).

Lemma

If G is weaRly acyclic for e, then for every n € N and [A,R] € V
it holds that [A, K] = selectg ¢)(An) implies [A, K] € Fig.e)(Cn),
where (G, e) = (V, +).



Proof sketch iii

Corollary

If G is weaRly acyclic for e, then for every n € N and [A,R] € V
it holds that [A, K] € Cn implies [A, K] € Fyg¢)(C;) for some
I < n, where I(G,e) = (V,+).



Lemma

For every item [A, K] it holds that once [A, K] has been added
to C, V([A, K]) will not change anymore.

Lemma

For every item [A, K] it holds that at every point of the
computation V([A,R]) = 0 or V([A,R]) = h(d) for d € (Tr)a
such that [rs(d)] = R(e).



W([A, ]) = Yy © h(d)
de(Tr)p:[ms(d)]=F(e)
Lemma

For every item [A, K] and for every d € (Tg)a such that
[r=(d)] = K(e) it holds that h(d) <4 W([A, &]).

Lemma

For every item [A, K] it holds that at every point of the
computation V([A, §]) =g W([A, R]).



Proof sketch iii

Proof.
[A,R] € C — V([A,R]) = W([A, R]) (1)
is a loop invariant for every A € N and R € ranges(e).

Proof by contradiction similar to [Knu77, Jun06]. O
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