
Introduction to Rust Ownership Borrowing rustomata The end?

A brief view on Rust and rustomata
Freitagsseminar

Christian Lewe

Fakultät Informatik
TU Dresden

26th January, 2018



Introduction to Rust Ownership Borrowing rustomata The end?

Overview

1 Introduction to Rust

2 Ownership

3 Borrowing

4 rustomata

5 The end?



Introduction to Rust Ownership Borrowing rustomata The end?

What is Rust?

I inspired by C++ and Haskell

I imperative basis

I functional aspects: pattern matching

I type system: statically typed, inference

I fast, close-to-metal, memory-safe, highly
parallel

I zero-cost abstractions

https://www.rust-lang.org/logos/
rust-logo-blk.svg

https://www.rust-lang.org/logos/ rust-logo-blk.svg
https://www.rust-lang.org/logos/ rust-logo-blk.svg


Introduction to Rust Ownership Borrowing rustomata The end?

Example Rust program

1 fn main() { // main method
2 let var0: u8 = 0; // let binding
3 // immutable variable
4 let var1 = "1"; // type inference
5 let mut var2 = 2; // mutable variable
6 var2 = 3;
7

8 let var3 = my_function(); // function call
9 let var4 = var1.len(); // method call

10 println!("{}", var0); // macro! call
11 }

Control structures: if, else, loop, while, for, . . .



Introduction to Rust Ownership Borrowing rustomata The end?

Function syntax

1 fn function_identifier(arg0: type0, ..., argK: typeK)
2 -> return_type {
3 statement1; // with semicolon
4 // ...
5 return statementI; // early return
6 // ...
7 statementN // final return
8 // without semicolon
9 // ‘return statementN;’ is equivalent

10 }



Introduction to Rust Ownership Borrowing rustomata The end?

Revision: scopes

1 fn main() {
2 {
3 let x = 1;
4 }
5

6 let y = x; // compile error !!!
7 }

error[E0425]: cannot find value ‘x‘ in this scope
6 | let y = x;
| ˆ not found in this scope



Introduction to Rust Ownership Borrowing rustomata The end?

The ‘move’ problem

1 fn main() {
2 let x = String::from("Hello");
3 let y = string_len(x); // x is moved
4 println!("{},␣world", x); // compile error !!!
5 }
6

7 fn string_len(z: String) -> usize {
8 z.len()
9 }

error[E0382]: use of moved value: ‘x‘
3 | let y = string_len(x);
| - value moved here

4 | println!("{}, world", x);
| ˆ value used here after move



Introduction to Rust Ownership Borrowing rustomata The end?

The ownership rules

1. Each value is bound to a variable, which we call its ‘owner’.

2. There can only be one such owner at a time.

3. When the owner goes out of scope, the value is freed.



Introduction to Rust Ownership Borrowing rustomata The end?

Explanation of the ‘move’ problem

1 fn main() {
2 let x = String::from("Hello"); // x is owner
3 let y = string_len(x); // z becomes owner
4 println!("{},␣world", x); // "Hello" was freed
5 } // -> compile error
6

7 fn string_len(z: String) -> usize {
8 z.len()
9 } // z leaves scope -> "Hello" is freed

1. Each value in Rust is bound to a variable, which we call its ‘owner’.

2. There can only be one such owner at a time.

3. When the owner goes out of scope, the value is freed.



Introduction to Rust Ownership Borrowing rustomata The end?

Review of the ownership system

Upsides:
I automatic freeing of allocated space
I no garbage collection necessary
I no ‘use after free’ anomalies
I zero-cost abstraction

Downsides:
I different way of writing programs
I high learning curve



Introduction to Rust Ownership Borrowing rustomata The end?

How to fix our code with Clone

I types can implement the Clone trait
I value is duplicated (deep copy)
I duplicate is assigned to a new owner (target of .clone())

1 fn main() {
2 let x = String::from("Hello");
3 let y = string_len(x.clone());
4 println!("{},␣world", x);
5 }



Introduction to Rust Ownership Borrowing rustomata The end?

Borrowing

I clone() takes time and uses memory
→ fast language?!

I faster alternative: reference to data (a.k.a. ‘pointer’)
I taking a reference is called ‘borrowing’
I reference is lifted once it goes out of scope

1 fn main() {
2 let x = String::from("Hello");
3 let y = string_len(&x);
4 println!("{},␣world", x);
5 }
6

7 fn string_len(z: &String) -> usize {
8 z.len()
9 }



Introduction to Rust Ownership Borrowing rustomata The end?

Kinds of references

Immutable reference:
I created using ‘&’
I read-only access
I arbitrary number allowed at the same time

Mutable reference:
I created using ‘&mut’
I read-and-write access
I only one allowed at the same time

Only one kind of reference is allowed at any time for any value.
=⇒ either immutable or mutable



Introduction to Rust Ownership Borrowing rustomata The end?

What is rustomata?

‘Framework for (weighted) automata with storage’

Features:
I accessible through CLI commands
I construct automata from grammars:

I LCFRS → tree-stack automaton
I CFG → push-down automaton

I parse input words, using an automaton:
I tree-stack automaton word→ parse tree
I push-down automaton word→ parse tree

I much more

https://github.com/tud-fop/rustomata

https://github.com/tud-fop/rustomata


Introduction to Rust Ownership Borrowing rustomata The end?

rustomata live demo



Introduction to Rust Ownership Borrowing rustomata The end?

Rust has many more features!

I lifetimes

I traits

I iterators & closures

I error handling

I smart pointers

I parallel programming

I modules & crates

I package management with cargo

I unit and integration tests

I standard library

I unsafe Rust



Introduction to Rust Ownership Borrowing rustomata The end?

You want to learn more?

I ‘The Rust Programming Language’
https://doc.rust-lang.org/book/

I ‘Rust by Example’
https://rustbyexample.com

I ‘The Rust Standard Library’
https://doc.rust-lang.org/std/

I ‘rustup’
https://www.rustup.rs/

https://doc.rust-lang.org/book/
https://rustbyexample.com
https://doc.rust-lang.org/std/
https://www.rustup.rs/


More ownership Traits

Bonus slides!

6 More ownership

7 Traits



More ownership Traits

Ownership and Copy

I simple types can implement the Copy trait
I data on the stack
I size known at compile-time: bools, integers, chars, floats, . . .
I ‘automatic clone’

1 fn main() {
2 let x = 1;
3 let y = x; // x is copied
4 println!("{}␣+␣1␣=␣2", x);
5 }



More ownership Traits

Generics and missing methods

1 struct Rectangle {
2 width: u8,
3 height: u8,
4 }
5

6 fn print_on_equal<A>(x: &A, y: &A) {
7 if x.eq(y) {
8 println!("Equal");
9 }

10 }
11

12 fn main() {
13 let r1 = Rectangle { width: 1, height: 2 };
14 let r2 = Rectangle { width: 1, height: 3 };
15 print_on_equal(&r1, &r2);
16 }



More ownership Traits

Generics and missing methods

6 fn print_on_equal<A>(x: &A, y: &A) {
7 if x.eq(y) {
8 println!("Equal");
9 }

10 }

error[E0599]: no method named ‘eq‘ found
for type ‘&A‘ in the current scope

|
7 | if x.eq(y) {
| ˆˆ



More ownership Traits

Traits

I restrict acceptable generic types
I types with a trait must implement all its methods
I similiar: ‘type classes’ in Haskell, ‘abstract classes’ in C++
I default implementations

1 pub trait PartialEq<A = Self> {
2 fn eq(&self, other: &A) -> bool; // required
3

4 fn ne(&self, other: &A) -> bool { // default
5 !self.eq(other)
6 }
7 }



More ownership Traits

How to fix our code with PartialEq

I implement PartialEq for type Rectangle
I other has to be of type Rectangle
I print on equal requires PartialEq

1 impl PartialEq for Rectangle {
2 fn eq(&self, other ) -> bool {
3 (self.width == other.width) &
4 (self.height == other.height)
5 }
6 }
7

8 fn print_on_equal<A >(x: &A, y: &A) {
9 if x.eq(y) {

10 println!("Equal");
11 }
12 }



More ownership Traits

How to fix our code with PartialEq

I implement PartialEq for type Rectangle
I other has to be of type Rectangle
I print on equal requires PartialEq

1 impl PartialEq<Rectangle> for Rectangle {
2 fn eq(&self, other: &Rectangle) -> bool {
3 (self.width == other.width) &
4 (self.height == other.height)
5 }
6 }
7

8 fn print_on_equal<A >(x: &A, y: &A) {
9 if x.eq(y) {

10 println!("Equal");
11 }
12 }



More ownership Traits

How to fix our code with PartialEq

I implement PartialEq for type Rectangle
I other has to be of type Rectangle
I print on equal requires PartialEq

1 impl PartialEq<Rectangle> for Rectangle {
2 fn eq(&self, other: &Rectangle) -> bool {
3 (self.width == other.width) &
4 (self.height == other.height)
5 }
6 }
7

8 fn print_on_equal<A: PartialEq>(x: &A, y: &A) {
9 if x.eq(y) {

10 println!("Equal");
11 }
12 }



More ownership Traits

Automatic implementation with derive

I many traits can be derived automatically
I #[derive(Trait1, Trait2, ...)]
I Eq, PartialEq, Ord, PartialOrd, Clone, Copy, . . .

1 #[derive(PartialEq)]
2 struct Rectangle {
3 width: u8,
4 height: u8,
5 }
6

7 fn print_on_equal<A: PartialEq>(x: &A, y: &A) {
8 if x.eq(y) {
9 println!("Equal");

10 }
11 }


	Introduction to Rust
	

	Ownership
	

	Borrowing
	

	rustomata
	

	The end?
	

	Appendix
	More ownership
	

	Traits
	



